Cleanup
This commit is contained in:
284
Intermediate/Slide Rules/parts/2 multiplication.tex
Normal file
284
Intermediate/Slide Rules/parts/2 multiplication.tex
Normal file
@ -0,0 +1,284 @@
|
||||
\section{Multiplication}
|
||||
|
||||
We'll use the C and D scales of your slide rule to multiply. \\
|
||||
|
||||
Say we want to multiply $2 \times 3$. First, move the \textit{left-hand index} of the C scale over the smaller number, $2$:
|
||||
|
||||
\def\sliderulewidth{10}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(2)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Then we'll find the second number, $3$ on the C scale, and read the D scale under it:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(2)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(6)}
|
||||
{1}
|
||||
{6}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Of course, our answer is 6.
|
||||
|
||||
\problem{}
|
||||
What is $1.15 \times 2.1$? \\
|
||||
Use your slide rule.
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(1.15)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(1.15)}
|
||||
{1}
|
||||
{1.15}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(1.15) + \cdscalefn(2.1)}
|
||||
{1}
|
||||
{2.415}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
Note that your answer isn't exact. $1.15 \times 2.1 = 2.415$, but an answer accurate within two decimal places is close enough for most practical applications. \\
|
||||
|
||||
\pagebreak
|
||||
|
||||
Look at your C and D scales again. They contain every number between 1 and 10, but no more than that.
|
||||
What should we do if we want to calculate $32 \times 210$? \\
|
||||
|
||||
\problem{}
|
||||
Using your slide rule, calculate $32 \times 210$. \\
|
||||
%\hint{$32 = 3.2 \times 10^1$}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(2.1)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(2.1)}
|
||||
{1}
|
||||
{2.1}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(2.1) + \cdscalefn(3.2)}
|
||||
{1}
|
||||
{6.72}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Placing the decimal point correctly is your job. \\
|
||||
$10^1 \times 10^2 = 10^3$, so our final answer is $6.72 \times 10^3 = 672$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
%This method of writing numbers is called \textit{scientific notation}. In the form $a \times 10^b$, $a$ is called the \textit{mantissa}, and $b$, the \textit{exponent}. \\
|
||||
|
||||
%You may also see expressions like $4.3\text{e}2$. This is equivalent to $4.3 \times 10^2$, but is more compact.
|
||||
|
||||
|
||||
\problem{}
|
||||
Compute the following:
|
||||
\begin{enumerate}
|
||||
\item $1.44 \times 52$
|
||||
\item $0.38 \times 1.24$
|
||||
\item $\pi \times 2.35$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item $1.44 \times 52 = 74.88$
|
||||
\item $0.38 \times 1.24 = 0.4712$
|
||||
\item $\pi \times 2.35 = 7.382$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}<provemult>
|
||||
Note that the numbers on your C and D scales are logarithmically spaced.
|
||||
|
||||
\def\sliderulewidth{13}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{0}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Why does our multiplication procedure work? \\
|
||||
%\hint{See \ref{logids}}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
Now we want to compute $7.2 \times 5.5$:
|
||||
|
||||
\def\sliderulewidth{10}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\cdscale{\cdscalefn(5.5)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(5.5)}
|
||||
{1}
|
||||
{5.5}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(5.5) + \cdscalefn(7.2)}
|
||||
{1}
|
||||
{???}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
No matter what order we go in, the answer ends up off the scale. There must be another way. \\
|
||||
|
||||
\medskip
|
||||
|
||||
Look at the far right of your C scale. There's an arrow pointing to the $10$ tick, labeled \textit{right-hand index}. Move it over the \textit{larger} number, $7.2$:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(7.2)}
|
||||
{1}
|
||||
{7.2}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Now find the smaller number, $5.5$, on the C scale, and read the D scale under it:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C}
|
||||
\cdscale{0}{0}{D}
|
||||
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(7.2)}
|
||||
{1}
|
||||
{7.2}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(3.96)}
|
||||
{1}
|
||||
{3.96}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Our answer should be about $7 \times 5 = 35$, so let's move the decimal point: $5.5 \times 7.2 = 39.6$. We can do this by hand to verify our answer. \\
|
||||
|
||||
\medskip
|
||||
|
||||
\iftrue
|
||||
\problem{}
|
||||
Why does this work?
|
||||
|
||||
\else
|
||||
Why does this work? \\
|
||||
|
||||
\medskip
|
||||
|
||||
Consider the following picture, where I've put two D scales next to each other:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.7]
|
||||
\cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C}
|
||||
\cdscale{0}{0}{}
|
||||
\cdscale{-10}{0}{}
|
||||
|
||||
\draw[
|
||||
draw=black,
|
||||
]
|
||||
(0, 0)
|
||||
--
|
||||
(0, -0.3)
|
||||
node [below] {D};
|
||||
|
||||
\draw[
|
||||
draw=black,
|
||||
]
|
||||
(-10, 0)
|
||||
--
|
||||
(-10, -0.3)
|
||||
node [below] {D};
|
||||
|
||||
\slideruleind
|
||||
{-10 + \cdscalefn(7.2)}
|
||||
{1}
|
||||
{7.2}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(7.2)}
|
||||
{1}
|
||||
{7.2}
|
||||
|
||||
\slideruleind
|
||||
{\cdscalefn(3.96)}
|
||||
{1}
|
||||
{3.96}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\medskip
|
||||
|
||||
The second D scale has been moved to the right by $(\log{10})$, so every value on it is $(\log{10})$ smaller than it should be.
|
||||
|
||||
\medskip
|
||||
|
||||
\medskip
|
||||
In other words, the answer we get from reverse multiplication is the following: $\log{a} + \log{b} - \log{10}$. \\
|
||||
This reduces to $\log{(\frac{a \times b}{10})}$, which explains the misplaced decimal point in $7.2 \times 5.5$.
|
||||
\fi
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Compute the following using your slide rule:
|
||||
\begin{enumerate}
|
||||
\item $9 \times 8$
|
||||
\item $15 \times 35$
|
||||
\item $42.1 \times 7.65$
|
||||
\item $6.5^2$
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item $9 \times 8 = 72$
|
||||
\item $15 \times 35 = 525$
|
||||
\item $42.1 \times 7.65 = 322.065$
|
||||
\item $6.5^2 = 42.25$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user