2023-07-26 17:55:07 -07:00
\section { Equivalence}
2023-06-19 20:24:33 -07:00
\generic { Notation:}
Let $ S $ be a structure and $ \varphi $ a formula. \par
2023-07-26 17:55:07 -07:00
If $ \varphi $ is true in $ S $ , we write $ S \models \varphi $ . \par
This is read \say { $ S $ satisfies $ \varphi $ }
2023-06-19 20:24:33 -07:00
\definition { }
Let $ S $ and $ T $ be structures. \par
2024-05-23 12:40:43 -07:00
We say $ S $ and $ T $ are \textit { equivalent} (and write $ S \equiv T $ ) if for any formula $ \varphi $ , $ S \models \varphi \Longleftrightarrow T \models \varphi $ . \par
2023-07-27 18:58:45 -07:00
If $ S $ and $ T $ are not equivalent, we write $ S \not \equiv T $ .
2023-06-19 20:24:33 -07:00
\problem { }
Show that $
\Bigl (\mathbb { Z} ~\big |~ \{ +, 0 \} \Bigr )
\not \equiv
\Bigl (\mathbb { R} ~\big |~ \{ +, 0 \} \Bigr )
$
\vfill
\problem { }
Show that $
\Bigl (\mathbb { Z} ~\big |~ \{ +, 0 \} \Bigr )
\not \equiv
\Bigl (\mathbb { N} ~\big |~ \{ +, 0 \} \Bigr )
$
\vfill
\problem { }
Show that $
\Bigl (\mathbb { R} ~\big |~ \{ +, 0 \} \Bigr )
\not \equiv
\Bigl (\mathbb { N} ~\big |~ \{ +, 0 \} \Bigr )
$
\vfill
\problem { }
Show that $
\Bigl (\mathbb { R} ~\big |~ \{ +, 0 \} \Bigr )
\not \equiv
\Bigl (\mathbb { Z} ^ 2 ~\big |~ \{ +, 0 \} \Bigr )
$
\vfill
\problem { }
Show that $
\Bigl (\mathbb { Z} ~\big |~ \{ +, 0 \} \Bigr )
\not \equiv
\Bigl (\mathbb { Z} ^ 2 ~\big |~ \{ +, 0 \} \Bigr )
$
\begin { solution}
All of the above are easy, but the last one can take a while. \par
The trick is to notice that $ \mathbb { Z } $ has two equivalence classes mod 2, while $ \mathbb { Z } ^ 2 $ has four.
\end { solution}
\vfill