113 lines
2.5 KiB
TeX
Raw Normal View History

2023-05-06 17:05:30 -07:00
\section{Logical Algebra}
\definition{}
Odds are, you are familiar with \textit{logical symbols}. \par
In this handout, we'll use the following:
\begin{itemize}
\item $\lnot$: not
\item $\land$: and
\item $\lor$: or
\item $\rightarrow$: implies
\item $()$, parenthesis.
\end{itemize}
The function of these is defined by \textit{truth tables}:
\begin{center}
\begin{tabular}{ c | c | c }
\multicolumn{3}{ c }{and} \\
\hline
$A$ & $B$ & $A \land B$ \\
\hline
F & F & F \\
F & T & F \\
T & F & F \\
T & T & T
\end{tabular}
\hfill
\begin{tabular}{ c | c | c }
\multicolumn{3}{ c }{or} \\
\hline
$A$ & $B$ & $A \lor B$ \\
\hline
F & F & F \\
F & T & T \\
T & F & T \\
T & T & T
\end{tabular}
\hfill
\begin{tabular}{ c | c | c }
\multicolumn{3}{ c }{implies} \\
\hline
$A$ & $B$ & $A \rightarrow B$ \\
\hline
F & F & T \\
F & T & T \\
T & F & F \\
T & T & T
\end{tabular}
\hfill
\begin{tabular}{ c | c }
\multicolumn{2}{ c }{not} \\
\hline
$A$ & $\lnot A$ \\
\hline
T & F \\
F & T \\
~ & ~ \\
~ & ~ \\
\end{tabular}
\end{center}
\vspace{2mm}
2023-05-11 20:05:02 -07:00
$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is true when $A$ or $B$ (or both) are true. \par
2023-05-06 17:05:30 -07:00
$\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par
\vspace{2mm}
$A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par
The only time $\rightarrow$ is false is when $T \rightarrow F$. Think about it: why does this make sense? \par
\problem{}
Evaluate the following.
\begin{itemize}
\item $(T \land F) \lor T$
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
2023-05-09 21:23:09 -07:00
\item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$
2023-05-06 17:05:30 -07:00
\end{itemize}
\vfill
\pagebreak
2023-05-09 21:23:09 -07:00
\problem{}
Evaluate the following.
\begin{itemize}
\item $A \rightarrow T$ for any $A$
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A, B$
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
\end{itemize}
\vfill
2023-05-06 17:05:30 -07:00
\problem{}
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
2023-05-11 20:05:02 -07:00
That is, show that these give the same result for the same $A$ and $B$.
2023-05-06 17:05:30 -07:00
\hint{Use a truth table}
\vfill
\problem{}
Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
\begin{solution}
$((\lnot A) \rightarrow B)$
\end{solution}
\vfill
Note that both $\land$ and $\lor$ can be defined using the other logical symbols. \par
The only logical symbols we \textit{need} are $\lnot$, $\rightarrow$, and $()$. \par
We include $\land$ and $\lor$ to simplify our logical expressions.
\pagebreak