2024-09-23 13:34:01 -07:00
|
|
|
\section{Introduction}
|
|
|
|
|
|
|
|
\generic{Setup:}
|
|
|
|
Suppose we toss a 6-sided die $n$ times. \par
|
|
|
|
It is easy to detect the first time we roll a 6. \par
|
2024-09-25 09:13:56 -07:00
|
|
|
What should we do if we want to detect the \textit{last}?
|
2024-09-23 13:34:01 -07:00
|
|
|
|
|
|
|
\problem{}<lastl>
|
|
|
|
Given $l \leq n$, what is the probability that the last $l$
|
|
|
|
tosses of this die contain exactly one six? \par
|
|
|
|
\hint{Start with small $l$.}
|
|
|
|
|
|
|
|
\begin{solution}
|
2024-09-29 13:05:38 -07:00
|
|
|
$\mathcal{P}(\text{last } l \text{ tosses have exactly one 6}) = (\nicefrac{1}{6})(\nicefrac{5}{6})^{l-1} \times l$
|
2024-09-23 13:34:01 -07:00
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
2024-09-25 09:13:56 -07:00
|
|
|
For what value of $l$ is the probability in \ref{lastl} maximal? \par
|
2024-09-29 13:05:38 -07:00
|
|
|
The following table may help. \par
|
|
|
|
\note{We only care about integer values of $l$.}
|
2024-09-23 13:34:01 -07:00
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tabular}{|| c | c | c ||}
|
|
|
|
\hline
|
|
|
|
\rule{0pt}{3.5mm} % Bonus height for exponent
|
2024-09-29 13:05:38 -07:00
|
|
|
$l$ & $(\nicefrac{5}{6})^l$ & $(\nicefrac{1}{6})(\nicefrac{5}{6})^{l}$ \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
0 & 1.00 & 0.167 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
1 & 0.83 & 0.139 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
2 & 0.69 & 0.116 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
3 & 0.58 & 0.096 \\
|
|
|
|
\hline
|
|
|
|
4 & 0.48 & 0.080 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
|
|
|
5 & 0.40 & 0.067 \\
|
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
6 & 0.33 & 0.056 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
7 & 0.28 & 0.047 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
2024-09-29 13:05:38 -07:00
|
|
|
8 & 0.23 & 0.039 \\
|
2024-09-23 13:34:01 -07:00
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{solution}
|
2024-09-29 13:05:38 -07:00
|
|
|
$(\nicefrac{1}{6})(\nicefrac{5}{6})^{l-1} \times l$ is maximal at $l = 5.48$, so $l = 5$. \par
|
2024-09-23 13:34:01 -07:00
|
|
|
$l = 6$ is close enough.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Finish your solution: \par
|
2024-09-25 09:13:56 -07:00
|
|
|
In $n$ rolls of a six-sided die, what strategy maximizes
|
|
|
|
our chance of detecting the last $6$ that is rolled? \par
|
2024-09-23 13:34:01 -07:00
|
|
|
What is the probability of our guess being right?
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
Whether $l = 5$, $5.4$, or $6$, the probability of success rounds to $0.40$.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|