65 lines
1.5 KiB
TeX
65 lines
1.5 KiB
TeX
|
\section{Introduction}
|
||
|
|
||
|
\generic{Setup:}
|
||
|
Suppose we toss a 6-sided die $n$ times. \par
|
||
|
It is easy to detect the first time we roll a 6. \par
|
||
|
What should we do if we want to annouce the \textit{last}?
|
||
|
|
||
|
\problem{}<lastl>
|
||
|
Given $l \leq n$, what is the probability that the last $l$
|
||
|
tosses of this die contain exactly one six? \par
|
||
|
\hint{Start with small $l$.}
|
||
|
|
||
|
\begin{solution}
|
||
|
$\mathcal{P}(\text{last } l \text{ tosses have exactly one 6}) = (\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
For what value of $l$ is the probability in \ref{lastl} maximal?
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tabular}{|| c | c | c ||}
|
||
|
\hline
|
||
|
\rule{0pt}{3.5mm} % Bonus height for exponent
|
||
|
$l$ & $(\nicefrac{5}{6})^l$ & $(\nicefrac{1}{6})(\nicefrac{5}{6})^l$ \\
|
||
|
\hline\hline
|
||
|
1 & 0.83 & 0.133 \\
|
||
|
\hline
|
||
|
2 & 0.69 & 0.115 \\
|
||
|
\hline
|
||
|
3 & 0.57 & 0.095 \\
|
||
|
\hline
|
||
|
4 & 0.48 & 0.089 \\
|
||
|
\hline
|
||
|
5 & 0.40 & 0.067 \\
|
||
|
\hline
|
||
|
6 & 0.33 & 0.055 \\
|
||
|
\hline
|
||
|
7 & 0.27 & 0.045 \\
|
||
|
\hline
|
||
|
8 & 0.23 & 0.038 \\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
\end{center}
|
||
|
|
||
|
\begin{solution}
|
||
|
$(\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$ is maximal at $x = 5.48$, so $l = 5$. \par
|
||
|
$l = 6$ is close enough.
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Finish your solution: \par
|
||
|
In $n$ rolls of a six-sided die, when should we announce the last time we roll a 6? \par
|
||
|
What is the probability of our guess being right?
|
||
|
|
||
|
\begin{solution}
|
||
|
Whether $l = 5$, $5.4$, or $6$, the probability of success rounds to $0.40$.
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|