127 lines
3.8 KiB
TeX
Raw Normal View History

2023-05-06 17:05:30 -07:00
\section{Structures}
2023-05-11 14:54:18 -07:00
\definition{}
A \textit{universe} is a set of meaningless objects. Here are a few examples:
2023-05-06 17:05:30 -07:00
\begin{itemize}
\item $\{a, b, ..., z\}$
\item $\{0, 1\}$
\item $\mathbb{Z}$, $\mathbb{R}$, etc.
\end{itemize}
\definition{}
2023-05-11 20:05:02 -07:00
A \textit{structure} consists of a universe $U$ and a set of symbols. \par
2023-05-11 14:54:18 -07:00
A structure's symbols give meaning to the objects in its universe.
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
Symbols generally come in three types:
\begin{itemize}
2023-05-11 14:54:18 -07:00
\item Constant symbols, which let us specify specific elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $0, 1, \frac{1}{2}, \pi$
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
\item Function symbols, which let us navigate between elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $+, \times, \sin{x}, \sqrt{x}$
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
\item Relation symbols, which let us compare elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $<, >, \leq, \geq$ \par
\vspace{2mm}
\end{itemize}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default.
2023-05-06 17:05:30 -07:00
\vspace{3mm}
\example{}
The first structure we'll look at is the following:
$$
2023-05-09 21:23:09 -07:00
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)
2023-05-06 17:05:30 -07:00
$$
\vspace{2mm}
2023-05-11 14:54:18 -07:00
This is a structure with the universe $\mathbb{Z}$ that contains the following symbols:
2023-05-06 17:05:30 -07:00
\begin{itemize}
2023-05-09 21:23:09 -07:00
\item Constants: \tab $\{0, 1\}$
\item Functions: \tab $\{+, -\}$
\item Relations: \tab $\{<\}$
2023-05-06 17:05:30 -07:00
\end{itemize}
\vspace{2mm}
2023-05-09 21:23:09 -07:00
If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
2023-05-06 17:05:30 -07:00
\vspace{1mm}
Say we want the number 2. We could use the function $+$ to define it: $2 \coloneqq [x \text{ where } 1 + 1 = x]$ \par
We would write this as $2 \coloneqq [x \text{ where } +(1, 1) = x]$ in proper \say{functional} notation.
\problem{}
Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)$? If so, how?
\vfill
\problem{}
Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, +, -, <\} \Bigr)$? \par
\hint{In this problem, $1$ has been removed from the set of constant symbols.}
\vfill
\pagebreak
Let us formalize what we found in the previous two problems. \par
\definition{}
A \textit{formula} in a structure $S$ is a well-formed string of constants, functions, and relations. \par
\vspace{2mm}
You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
2023-05-11 14:54:18 -07:00
\vspace{2mm}
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
Formulas with free variables let us define \say{properties} that certain objects have. \par
For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
$\varphi(3)$ is true and $\varphi(-3)$ is false.
2023-05-06 17:05:30 -07:00
\definition{Definable Elements}
2023-05-11 14:54:18 -07:00
Say $S$ is a with a universe $U$. \par
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
2023-05-06 17:05:30 -07:00
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-05-06 21:30:18 -07:00
Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-05-09 21:23:09 -07:00
$-2 \notin \mathbb{Z}^+$, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-05-11 14:54:18 -07:00
Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$.
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-05-11 14:54:18 -07:00
This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
2023-05-06 21:30:18 -07:00
We have no way to distinguish between negative and positive numbers.
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-05-09 21:23:09 -07:00
What numbers are definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-05-09 21:23:09 -07:00
With the tools we have so far, we can only define powers of two, positive and negative.
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
\pagebreak