2023-01-13 18:50:57 -08:00
\section { Groups}
\definition { }
A \textit { group} $ ( G, \ast ) $ consists of a set $ G $ and an operator $ \ast $ . \\
A group must have the following properties: \\
\begin { enumerate}
\item $ G $ is closed under $ \ast $ . In other words, $ a, b \in G \implies a \ast b \in G $ .
2023-01-13 22:46:10 -08:00
\item $ \ast $ is associative: $ ( a \ast b ) \ast c = a \ast ( b \ast c ) $
2023-01-13 18:50:57 -08:00
\item There is an \textit { identity} $ \overline { 0 } \in G $ , so that $ a \ast \overline { 0 } = a $ for all $ a \in G $ .
\item For any $ a \in G $ , there exists a $ b \in G $ so that $ a \ast b = \overline { 0 } $ . $ b $ is called the \textit { inverse} of $ a $ . \\
This element is written as $ - a $ if our operator is addition and $ a ^ { - 1 } $ otherwise.
\end { enumerate}
Any pair $ ( G, \ast ) $ that satisfies these properties is a group.
\definition { }
Note that our definition of a group does \textbf { not} state that $ a \ast b = b \ast a $ . \\
Many interesting groups do not have this property. \\
Those that do are called \textit { abelian} groups.
\problem { }
Is $ ( \mathbb { Z } / 5 , + ) $ a group? \\
Is $ ( \mathbb { Z } / 5 , - ) $ a group? \\
\hint { $ + $ and $ - $ refer to our usual definition of modular arithmetic.}
\vfill
\problem { }
$ ( \mathbb { R } , \times ) $ is not a group. \\
Make it one by modifying $ \mathbb { R } $ . \\
\begin { solution}
$ ( \mathbb { R } , \times ) $ is not a group because $ 0 $ has no inverse. \\
The solution is simple: remove the problem.
\vspace { 3mm}
$ ( \mathbb { R } - \{ 0 \} , \times ) $ is a group.
\end { solution}
\vfill
\problem { }
2023-01-13 22:46:10 -08:00
What is the smallest group we can create?
2023-01-13 18:50:57 -08:00
\begin { solution}
Let $ ( G, \circledcirc ) $ be our group, where $ G = \{ \star \} $ and $ \circledcirc $ is defined by the identity $ \star \circledcirc \star = \star $
Verifying that the trivial group is a group is trivial.
\end { solution}
2023-01-13 22:46:10 -08:00
\vfill
\problem { }
Let $ G $ be the set of all bijections $ A \to A $ . \\
Let $ \circ $ be the usual composition operator. \\
Is $ ( G, \circ ) $ a group?
\vfill
\pagebreak
\problem { }
Show that a group has exactly one identity element.
\vfill
\problem { }
Show that each element in a group has exactly one inverse.
\vfill
\problem { }
Let $ ( G, \ast ) $ be a group and $ a, b, c \in G $ . Show that...
\begin { itemize}
\item $ a \ast b $ and $ a \ast c \implies b = c $
\item $ b \ast a $ and $ c \ast a \implies b = c $
\end { itemize}
What does this mean intuitively?
\vfill
\problem { }
Let $ ( G, \ast ) $ be a finite group (i.e, $ G $ has finitely many elements), and let $ g \in G $ . \\
Show that $ \exists ~n \in Z ^ + $ so that $ g ^ n = \overline { 0 } $ \\
\hint { $ g ^ n = g \ast g \ast ... \ast g $ $ n $ times.}
\vspace { 2mm}
The smallest such $ n $ defines the \textit { order} of $ ( G, \ast ) $ .
\vfill
\problem { }
What is the order of 5 in $ ( \mathbb { Z } / 25 , + ) $ ? \\
What is the order of 2 in $ ( ( \mathbb { Z } / 17 ) ^ \times , \times ) $ ? \\
\vfill
\problem { }
Show that if $ G $ has four elements, $ ( G, \ast ) $ is abelian.
2023-01-13 18:50:57 -08:00
\vfill
\pagebreak
\definition { }
Recall your tables from \ref { modtables} : \\
\begin { center}
\begin { tabular} { c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end { tabular}
\hspace { 1cm}
\begin { tabular} { c | c c c c}
\times & 1 & 2 & 3 & 4 \\
\hline
1 & 1 & 2 & 4 & 3 \\
2 & 2 & 4 & 3 & 1 \\
3 & 4 & 3 & 1 & 2 \\
4 & 3 & 1 & 2 & 4 \\
\end { tabular}
\end { center}
2023-01-13 22:46:10 -08:00
Look at these tables and convince yourself that $ ( \mathbb { Z } / 4 , + ) $ and $ ( ( \mathbb { Z } / 5 ) ^ \times , \times ) $ are the same group. \\
2023-01-13 18:50:57 -08:00
We say that two such groups are \textit { isomorphic} .
\vspace { 2mm}
2023-01-13 22:46:10 -08:00
Intuitively, this means that these two groups have the same algebraic structure. We can translate statements about addition in $ \mathbb { Z } / 4 $ into statements about multiplication in $ ( \mathbb { Z } / 5 ) ^ \times $ \\
2023-01-13 18:50:57 -08:00
\pagebreak