49 lines
1.1 KiB
TeX
49 lines
1.1 KiB
TeX
|
\definition{}
|
||
|
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}.
|
||
|
|
||
|
\problem{}
|
||
|
Draw $\mathbb{Z}^2$.
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
|
||
|
\definition{}
|
||
|
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||
|
$$
|
||
|
a_1v_1 + a_2v_2 + ... a_nv_n
|
||
|
$$
|
||
|
for integer coeficcients $a_i$.
|
||
|
|
||
|
\problem{}
|
||
|
Which of the following generate $\mathbb{Z}^3$?
|
||
|
\begin{itemize}
|
||
|
\item $\{ (1,2), (2,1) \}$
|
||
|
\item $\{ (1,0), (0,2) \}$
|
||
|
\item $\{ (1,1), (1,0), (0,1) \}$
|
||
|
\end{itemize}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Find a set of vectors that generates $\mathbb{Z}^2$.
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Find a set of vectors that generates $\mathbb{Z}^n$.
|
||
|
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
\problem{}
|
||
|
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Draw two fundamental reions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|