\definition{} The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}. \problem{} Draw $\mathbb{Z}^2$. \vfill \definition{} We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as $$ a_1v_1 + a_2v_2 + ... a_nv_n $$ for integer coeficcients $a_i$. \problem{} Which of the following generate $\mathbb{Z}^3$? \begin{itemize} \item $\{ (1,2), (2,1) \}$ \item $\{ (1,0), (0,2) \}$ \item $\{ (1,1), (1,0), (0,1) \}$ \end{itemize} \vfill \problem{} Find a set of vectors that generates $\mathbb{Z}^2$. \vfill \problem{} Find a set of vectors that generates $\mathbb{Z}^n$. \vfill \pagebreak \problem{} A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use. \vfill \problem{} Draw two fundamental reions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same. \vfill \pagebreak