2023-04-16 17:29:46 -07:00
|
|
|
\section{Matrices}
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
A \textit{matrix} is a two-dimensional array of numbers: \\
|
|
|
|
$$
|
|
|
|
A =
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 & 3 \\
|
|
|
|
4 & 5 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
|
|
|
|
|
|
|
\definition{}<matvec>
|
|
|
|
We can define the product of a matrix $A$ and a vector $v$:
|
|
|
|
|
|
|
|
$$
|
|
|
|
Av =
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 & 3 \\
|
|
|
|
4 & 5 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
a \\ b \\ c
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
1a + 2b + 3c \\
|
|
|
|
4a + 5b + 6c
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
|
|
|
|
|
|
|
$$
|
|
|
|
Av =
|
|
|
|
\begin{bmatrix}
|
|
|
|
\text{---} a_1 \text{---} \\
|
|
|
|
\text{---} a_2 \text{---}
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
| \\
|
|
|
|
v \\
|
|
|
|
| \\
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
r_1v \\
|
|
|
|
r_2v
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Compute the following:
|
|
|
|
|
|
|
|
$$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 \\
|
|
|
|
3 & 4 \\
|
|
|
|
5 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
5 \\ 3
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
We also multiply a matrix by a matrix:
|
|
|
|
|
|
|
|
$$
|
|
|
|
AB =
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 \\
|
|
|
|
3 & 4
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
10 & 20 \\
|
|
|
|
100 & 200
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
210 & 420 \\
|
|
|
|
430 & 860
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$:
|
|
|
|
|
|
|
|
$$
|
|
|
|
AB =
|
|
|
|
\begin{bmatrix}
|
|
|
|
\text{---} a_1 \text{---} \\
|
|
|
|
\text{---} a_2 \text{---}
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
| & | \\
|
|
|
|
v_1 & v_2 \\
|
|
|
|
| & | \\
|
|
|
|
\end{bmatrix}
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
r_1v_1 & r_1v_2 \\
|
2023-04-19 08:43:52 -07:00
|
|
|
r_2v_1 & r_2v_2 \\
|
2023-04-16 17:29:46 -07:00
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{center}
|
2023-04-17 09:26:08 -07:00
|
|
|
\begin{tikzpicture}
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
\begin{scope}[layer = nodes]
|
|
|
|
\matrix[
|
|
|
|
matrix of math nodes,
|
|
|
|
left delimiter={[},
|
|
|
|
right delimiter={]}
|
|
|
|
] (A) at (0, 0){
|
|
|
|
1 & 2 \\
|
|
|
|
3 & 4 \\
|
|
|
|
};
|
|
|
|
|
|
|
|
\matrix[
|
|
|
|
matrix of math nodes,
|
|
|
|
left delimiter={[},
|
|
|
|
right delimiter={]}
|
|
|
|
] (B) at (2, 0) {
|
|
|
|
10 & 20 \\
|
|
|
|
100 & 200 \\
|
|
|
|
};
|
|
|
|
|
|
|
|
\node at (3.25, 0) {$=$};
|
|
|
|
|
|
|
|
\matrix[
|
|
|
|
matrix of math nodes,
|
|
|
|
left delimiter={[},
|
|
|
|
right delimiter={]}
|
|
|
|
] (C) at (4.5, 0) {
|
|
|
|
210 & 420 \\
|
|
|
|
430 & 860 \\
|
|
|
|
};
|
|
|
|
\end{scope}
|
|
|
|
|
2023-04-17 09:26:08 -07:00
|
|
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {};
|
2023-04-16 17:29:46 -07:00
|
|
|
|
2023-04-17 09:26:08 -07:00
|
|
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {};
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
|
|
|
|
|
|
|
|
|
2023-04-17 09:26:08 -07:00
|
|
|
\draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {};
|
2023-04-16 17:29:46 -07:00
|
|
|
|
2023-04-17 09:26:08 -07:00
|
|
|
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Compute the following matrix product. \\
|
|
|
|
|
|
|
|
$$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 \\
|
|
|
|
3 & 4 \\
|
|
|
|
5 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
9 & 8 & 7 \\
|
|
|
|
6 & 5 & 4
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
2023-04-17 09:26:08 -07:00
|
|
|
Compute the following matrix product or explain why you can't.
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
$$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 & 3 \\
|
|
|
|
4 & 5 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
\begin{bmatrix}
|
|
|
|
10 & 20 \\
|
|
|
|
30 & 40
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist?
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
2023-04-17 09:26:08 -07:00
|
|
|
\problem{}
|
|
|
|
Is matrix multiplication commutative? \\
|
|
|
|
\note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows:
|
|
|
|
|
|
|
|
$$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 & 3 \\
|
|
|
|
4 & 5 & 6
|
|
|
|
\end{bmatrix} ^ T
|
|
|
|
=
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 4 \\
|
|
|
|
2 & 5 \\
|
|
|
|
3 & 6
|
|
|
|
\end{bmatrix}
|
|
|
|
$$
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Compute the following:
|
|
|
|
|
|
|
|
\hfill
|
|
|
|
$
|
|
|
|
\begin{bmatrix}
|
|
|
|
a & b \\
|
|
|
|
c & d
|
|
|
|
\end{bmatrix} ^ T
|
|
|
|
$\hfill
|
|
|
|
$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 \\
|
|
|
|
3 \\
|
|
|
|
3 \\
|
|
|
|
7 \\
|
|
|
|
\end{bmatrix} ^ T
|
|
|
|
$\hfill
|
|
|
|
$
|
|
|
|
\begin{bmatrix}
|
|
|
|
1 & 2 & 4 & 8 \\
|
|
|
|
\end{bmatrix} ^ T
|
|
|
|
$
|
|
|
|
\hfill~
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
The \say{transpose} operator is often used to write column vectors compactly. \\
|
|
|
|
Vertical arrays don't look good in horizontal text.
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\
|
|
|
|
\begin{itemize}
|
|
|
|
\item Compute the dot product $ab$.
|
|
|
|
\item Can you redefine the dot product using matrix multiplication?
|
|
|
|
\end{itemize}
|
|
|
|
\note{As you may have noticed, a vector is a special case of a matrix.}
|
|
|
|
|
|
|
|
\vfill
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
\problem{}
|
2023-04-17 09:26:08 -07:00
|
|
|
A \textit{column vector} is an $m \times 1$ matrix. \\
|
|
|
|
A \textit{row vector} is a $1 \times m$ matrix. \\
|
|
|
|
We usually use column vectors. Why? \\
|
|
|
|
\hint{How does vector-matrix multiplication work?}
|
2023-04-16 17:29:46 -07:00
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|