219 lines
3.7 KiB
TeX
219 lines
3.7 KiB
TeX
|
\section{Matrices}
|
||
|
|
||
|
\definition{}
|
||
|
A \textit{matrix} is a two-dimensional array of numbers: \\
|
||
|
$$
|
||
|
A =
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 3 \\
|
||
|
4 & 5 & 6
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
||
|
|
||
|
\definition{}<matvec>
|
||
|
We can define the product of a matrix $A$ and a vector $v$:
|
||
|
|
||
|
$$
|
||
|
Av =
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 3 \\
|
||
|
4 & 5 & 6
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
a \\ b \\ c
|
||
|
\end{bmatrix}
|
||
|
=
|
||
|
\begin{bmatrix}
|
||
|
1a + 2b + 3c \\
|
||
|
4a + 5b + 6c
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||
|
|
||
|
$$
|
||
|
Av =
|
||
|
\begin{bmatrix}
|
||
|
\text{---} a_1 \text{---} \\
|
||
|
\text{---} a_2 \text{---}
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
| \\
|
||
|
v \\
|
||
|
| \\
|
||
|
\end{bmatrix}
|
||
|
=
|
||
|
\begin{bmatrix}
|
||
|
r_1v \\
|
||
|
r_2v
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
|
||
|
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Compute the following:
|
||
|
|
||
|
$$
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 \\
|
||
|
3 & 4 \\
|
||
|
5 & 6
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
5 \\ 3
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
\definition{}
|
||
|
We also multiply a matrix by a matrix:
|
||
|
|
||
|
$$
|
||
|
AB =
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 \\
|
||
|
3 & 4
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
10 & 20 \\
|
||
|
100 & 200
|
||
|
\end{bmatrix}
|
||
|
=
|
||
|
\begin{bmatrix}
|
||
|
210 & 420 \\
|
||
|
430 & 860
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$:
|
||
|
|
||
|
$$
|
||
|
AB =
|
||
|
\begin{bmatrix}
|
||
|
\text{---} a_1 \text{---} \\
|
||
|
\text{---} a_2 \text{---}
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
| & | \\
|
||
|
v_1 & v_2 \\
|
||
|
| & | \\
|
||
|
\end{bmatrix}
|
||
|
=
|
||
|
\begin{bmatrix}
|
||
|
r_1v_1 & r_1v_2 \\
|
||
|
r_2v_1 & r_2vm_2 \\
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[>=stealth,thick,baseline]
|
||
|
|
||
|
\begin{scope}[layer = nodes]
|
||
|
\matrix[
|
||
|
matrix of math nodes,
|
||
|
left delimiter={[},
|
||
|
right delimiter={]}
|
||
|
] (A) at (0, 0){
|
||
|
1 & 2 \\
|
||
|
3 & 4 \\
|
||
|
};
|
||
|
|
||
|
\matrix[
|
||
|
matrix of math nodes,
|
||
|
left delimiter={[},
|
||
|
right delimiter={]}
|
||
|
] (B) at (2, 0) {
|
||
|
10 & 20 \\
|
||
|
100 & 200 \\
|
||
|
};
|
||
|
|
||
|
\node at (3.25, 0) {$=$};
|
||
|
|
||
|
\matrix[
|
||
|
matrix of math nodes,
|
||
|
left delimiter={[},
|
||
|
right delimiter={]}
|
||
|
] (C) at (4.5, 0) {
|
||
|
210 & 420 \\
|
||
|
430 & 860 \\
|
||
|
};
|
||
|
\end{scope}
|
||
|
|
||
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {};
|
||
|
|
||
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {};
|
||
|
|
||
|
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
|
||
|
|
||
|
|
||
|
\draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {};
|
||
|
|
||
|
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
|
||
|
|
||
|
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Compute the following matrix product. \\
|
||
|
|
||
|
$$
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 \\
|
||
|
3 & 4 \\
|
||
|
5 & 6
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
9 & 8 & 7 \\
|
||
|
6 & 5 & 4
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Consider the following matrix product. \\
|
||
|
Compute it or explain why you can't.
|
||
|
|
||
|
$$
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 3 \\
|
||
|
4 & 5 & 6
|
||
|
\end{bmatrix}
|
||
|
\begin{bmatrix}
|
||
|
10 & 20 \\
|
||
|
30 & 40
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist?
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Look back to \ref{matvec}. \\
|
||
|
Convince yourself that vectors are matrices. \\
|
||
|
|
||
|
Can you multiply a matrix by a vector, as in $vA$? \\
|
||
|
How does the dot prouduct relate to matrix multiplication? (transpose)
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|