2023-04-09 10:58:49 -07:00
|
|
|
\section{Vectors}
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
|
|
|
|
As you may already know, we have a few operations on vectors:
|
|
|
|
\begin{itemize}
|
|
|
|
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
|
|
|
|
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
|
|
|
|
\end{itemize}
|
|
|
|
\note{
|
|
|
|
The above examples are for $\mathbb{R}^2$, and each vector thus has two components. \\
|
|
|
|
These operations are similar for all other $n$.
|
|
|
|
}
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Compute the following or explain why you can't:
|
|
|
|
\begin{itemize}
|
|
|
|
\item $[1, 2, 3] - [1, 3, 4]$ \note{Subtraction works just like addition.}
|
|
|
|
\item $4 \times [5, 2, 4]$
|
|
|
|
\item $a + b$, where $a \in \mathbb{R}
|
|
|
|
^5$ and $b \in \mathbb{R}^7$
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Consider $(2, -1)$ and $(3, 1)$ in $\mathbb{R}^2$. \\
|
|
|
|
Can you develop geometric intuition for their sum and difference?
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=1]
|
|
|
|
|
|
|
|
\draw[->]
|
2023-04-19 08:58:26 -07:00
|
|
|
(0,0) coordinate (o) -- node[below left] {$(2, -1)$}
|
2023-04-09 10:58:49 -07:00
|
|
|
(2, -1) coordinate (a)
|
|
|
|
;
|
|
|
|
|
|
|
|
\draw[->]
|
|
|
|
(a) -- node[below right] {$(3, 1)$}
|
|
|
|
(5, 0) coordinate (b)
|
|
|
|
;
|
|
|
|
|
|
|
|
\draw[
|
|
|
|
draw = gray,
|
|
|
|
text = gray,
|
|
|
|
->
|
|
|
|
]
|
|
|
|
(o) -- node[above] {$??$}
|
|
|
|
(b) coordinate (s)
|
|
|
|
;
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
\definition{Euclidean Norm}
|
2023-04-20 21:11:28 -07:00
|
|
|
A \textit{norm} on $\mathbb{R}^n$ is a map from $\mathbb{R}^n$ to $\mathbb{R}^+_0$ \\
|
2023-12-09 18:17:22 -08:00
|
|
|
Usually, one thinks of a norm as a way of measuring \say{length} in a vector space. \\
|
2023-04-09 10:58:49 -07:00
|
|
|
The norm of a vector $v$ is written $||v||$. \\
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
2023-04-20 21:11:28 -07:00
|
|
|
We usually use the \textit{Euclidean norm} when we work in $\mathbb{R}^n$. \\
|
|
|
|
If $v \in \mathbb{R}^n$, the Euclidean norm is defined as follows: \\
|
|
|
|
If $v = [v_1, v_2, ..., v_n]$,
|
2023-04-09 10:58:49 -07:00
|
|
|
$$
|
|
|
|
||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}
|
|
|
|
$$
|
2023-04-20 21:11:28 -07:00
|
|
|
This is simply an application of the Pythagorean theorem.
|
2023-04-09 10:58:49 -07:00
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Compute the euclidean norm of
|
|
|
|
\begin{itemize}
|
|
|
|
\item $[2, 3]$
|
|
|
|
\item $[-2, 1, -4, 2]$
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\vfill
|
2023-04-20 21:11:28 -07:00
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that $a \cdot a$ is $||a||^2$.
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
2023-04-09 10:58:49 -07:00
|
|
|
\pagebreak
|