2023-04-16 17:29:46 -07:00
\section { Dot Products}
\definition { }
We can also define the \textit { dot product} of two vectors.\footnotemark { } \\
The dot product maps two elements of $ \mathbb { R } ^ n $ to one element of $ \mathbb { R } $ :
\footnotetext {
\textbf { Bonus content. Feel free to skip.}
Formally, we would say that the dot product is a map from $ \mathbb { R } ^ n \times \mathbb { R } ^ n $ to $ \mathbb { R } $ . Why is this reasonable?
\vspace { 2mm}
2023-04-20 21:11:28 -07:00
It's also worth noting that a function $ f $ from $ X $ to $ Y $ can be defined as a subset of $ X \times Y $ , where for all $ x \in X $ there exists a unique $ y \in Y $ so that $ ( x, y ) \in f $ . Try to make sense of this definition.
2023-04-16 17:29:46 -07:00
}
$$
a \cdot b = \sum _ { i = 1} ^ n a_ ib_ i = a_ 1b_ 1 + a_ 2b_ 2 + ... + a_ nb_ n
$$
\problem { }
Compute $ [ 2 , 3 , 4 , 1 ] \cdot [ 2 , 4 , 10 , 12 ] $
\vfill
\problem { }
Show that the dot product is
\begin { itemize}
\item Commutative
2023-04-20 21:11:28 -07:00
\item Distributive $ a \cdot ( b + c ) = a \cdot b + a \cdot c $
\item Homogenous: $ x ( a \cdot b ) = xa \cdot b = a \cdot xb $ \\
\note { $ x \in \mathbb { R } $ , and $ a, b $ are vectors.}
\item Positive definite: $ a \cdot a \geq 0 $ , with equality iff $ a = 0 $ \\
\note { $ a \in \mathbb { R } ^ n $ , and $ 0 $ is the zero vector.}
2023-04-16 17:29:46 -07:00
\end { itemize}
\vfill
\pagebreak
\problem { }
2023-04-20 21:11:28 -07:00
Say you have two vectors, $ a $ and $ b $ . Show that $ a \cdot b $ = $ ||a||~||b|| \cos ( \alpha ) $ , \\
where $ \alpha $ is the angle between $ a $ and $ b $ . \\
2023-04-16 17:29:46 -07:00
\hint { What is $ c $ in terms of $ a $ and $ b $ ?}
\hint { The law of cosines is $ a ^ 2 + b ^ 2 - 2 ab \cos ( \alpha ) = c ^ 2 $ }
\hint { The length of $ a $ is $ ||a|| $ }
\begin { center}
\begin { tikzpicture} [scale=1]
\draw [->]
(0,0) coordinate (o) -- node[above left] { $ a $ }
(1,2) coordinate (a)
;
\draw [->]
(o) -- node[below] { $ b $ }
(3,0.5) coordinate (b)
;
\draw [
draw = gray,
text = gray,
-
] (a) -- node[above] { $ c $ } (b);
\draw
pic[
"$ \alpha $ ",
draw = orange,
text = orange,
<->,
angle eccentricity = 1.2,
angle radius = 1cm
]
{ angle = b--o--a }
;
\end { tikzpicture}
\end { center}
\vfill
\problem { }
2023-04-19 08:58:26 -07:00
If $ a $ and $ b $ are perpendicular, what must $ a \cdot b $ be? Is the converse true?
2023-04-16 17:29:46 -07:00
\vfill
\pagebreak