83 lines
2.4 KiB
TeX
83 lines
2.4 KiB
TeX
|
\section{Definable Sets}
|
||
|
|
||
|
Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets.
|
||
|
|
||
|
\definition{Set-Builder Notation}
|
||
|
Say we have a condition $c$. \par
|
||
|
The set of all elements that satisfy that condition can be written as follows:
|
||
|
$$
|
||
|
\{ x ~|~ \text{$c$ is true} \}
|
||
|
$$
|
||
|
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
|
||
|
|
||
|
|
||
|
\definition{Definable Sets}
|
||
|
Let $S$ be a structure over a language $\mathcal{L}$. \par
|
||
|
We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
|
||
|
|
||
|
\vspace{4mm}
|
||
|
|
||
|
For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par
|
||
|
|
||
|
\vspace{2mm}
|
||
|
|
||
|
Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par
|
||
|
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
|
||
|
Remember---we can only use symbols that are available in our structure!
|
||
|
|
||
|
\problem{}
|
||
|
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define the set of rational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define the set of irrational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ i, ~ \text{real}(z), \times\} \Bigr)$ \par
|
||
|
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
||
|
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||
|
|
||
|
\begin{solution}
|
||
|
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ \text{real}(z), \times\} \Bigr)$ \par
|
||
|
|
||
|
\begin{solution}
|
||
|
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(y) = 0 \rightarrow \lnot \bigl[ \text{real}(x \times y) = 0 \bigr] \Bigr) \Biggr\}$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Define $\mathbb{R}$ in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z), \times\} \Bigr)$ \par
|
||
|
|
||
|
\begin{solution}
|
||
|
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(x) \times y = \text{real}(x) \Bigr) \Biggr\}$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|