2023-04-28 15:09:42 -07:00
\definition { }
2023-05-15 10:33:03 -07:00
The \textit { integer lattice} $ \mathbb { Z } ^ n \subset \mathbb { R } ^ n $ is the set of points with integer coordinates.
2023-04-28 15:09:42 -07:00
\problem { }
Draw $ \mathbb { Z } ^ 2 $ .
\vfill
\definition { }
2023-05-15 10:33:03 -07:00
We say a set of vectors $ \{ v _ 1 , v _ 2 , ..., v _ k \} $ \textit { generates} $ \mathbb { Z } ^ n $ if every lattice point can be written uniquely as
2023-04-28 15:09:42 -07:00
$$
2023-05-15 10:33:03 -07:00
a_ 1v_ 1 + a_ 2v_ 2 + ... + a_ kv_ k
2023-04-28 15:09:42 -07:00
$$
2023-05-15 10:33:03 -07:00
for integer coefficients $ a _ i $ . \par
It is fairly easy to show that $ k $ must be at least $ n $ .
2023-04-28 15:09:42 -07:00
\problem { }
2023-04-30 20:27:45 -07:00
Which of the following generate $ \mathbb { Z } ^ 2 $ ?
2023-04-28 15:09:42 -07:00
\begin { itemize}
\item $ \{ ( 1 , 2 ) , ( 2 , 1 ) \} $
\item $ \{ ( 1 , 0 ) , ( 0 , 2 ) \} $
\item $ \{ ( 1 , 1 ) , ( 1 , 0 ) , ( 0 , 1 ) \} $
\end { itemize}
2023-04-30 20:27:45 -07:00
\begin { solution}
Only the last.
\end { solution}
2023-04-28 15:09:42 -07:00
\vfill
\problem { }
2023-05-15 10:33:03 -07:00
Find a set of two vectors that generates $ \mathbb { Z } ^ 2 $ . \\
Don't say $ \{ ( 0 , 1 ) , ( 1 , 0 ) \} $ , that's too easy.
2023-04-28 15:09:42 -07:00
\vfill
\problem { }
Find a set of vectors that generates $ \mathbb { Z } ^ n $ .
\vfill
\pagebreak
2023-04-28 15:33:41 -07:00
\definition { }
2023-04-28 15:09:42 -07:00
A \textit { fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
\problem { }
2023-04-28 15:33:41 -07:00
Draw two fundamental regions of $ \mathbb { Z } ^ 2 $ using two different generating sets. Verify that their volumes are the same.
2023-04-28 15:09:42 -07:00
\vfill
\pagebreak