2023-05-03 11:15:35 -07:00
|
|
|
\section{Modular Arithmetic}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\definition{}
|
|
|
|
We say that $a, b$ are equivalent mod $m$ if $m$ divides $a - b$. \\
|
|
|
|
If $a$ is equivalent to $b$ mod $m$, we write $a \equiv b \pmod{m}$. \\
|
|
|
|
You can think of $b$ as the remainder of $a \div m$:
|
|
|
|
\begin{itemize}
|
|
|
|
\item[] $32 \equiv 2 \pmod{6}$
|
|
|
|
\item[] $4 \equiv 4 \pmod{6}$
|
|
|
|
\item[] $-2 \equiv 4 \pmod{6}$
|
|
|
|
\end{itemize}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\problem{}
|
|
|
|
Complete the following:
|
|
|
|
\begin{itemize}
|
|
|
|
\item[] $87 \equiv ? \pmod{12}$ \hspace{3em} \textcolor{gray}{(Your answer should be between $0$ and $12$)}
|
|
|
|
\item[] $13 \equiv 2 \pmod{?}$
|
|
|
|
\item[] $? \equiv 1 \pmod{9}$
|
|
|
|
\end{itemize}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\begin{solution}
|
2022-11-13 13:02:25 -08:00
|
|
|
\begin{itemize}
|
2023-05-03 11:15:35 -07:00
|
|
|
\item[] $87 \equiv 3 \pmod{12}$
|
|
|
|
\item[] $13 \equiv 2 \pmod{11}$
|
|
|
|
\item[] $(9k + 1) \equiv 1 \pmod{9}\ \forall k \in \mathbb{Z}$
|
2022-11-13 13:02:25 -08:00
|
|
|
\end{itemize}
|
2023-05-03 11:15:35 -07:00
|
|
|
\end{solution}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\vfill
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\definition{}
|
|
|
|
The inverse of $a$ mod $m$ is an integer $a^\star$ so that \\
|
|
|
|
$a \times a^\star \equiv 1 \pmod{m}$. \\
|
|
|
|
Note that not every $a$ has an inverse mod $m$.
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\theorem{}<mod_has_inverse>
|
|
|
|
$a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\
|
|
|
|
\textcolor{gray}{\textit{The proof of this theorem is left as a challenge problem.}}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\problem{D\'ej\`a vu?}<find_inverse>
|
|
|
|
Find the inverse of $20 \pmod{14}$, if one exists. \\
|
|
|
|
Find the inverse of $34 \pmod{541}$, if one exists.
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\begin{solution}
|
|
|
|
$20^\star$ does not exist mod $14$, by \ref{mod_has_inverse}. \\
|
|
|
|
$34^\star \equiv -175 \equiv 366 \pmod{541}$.
|
|
|
|
See \ref{general_inverse} for an explanation.
|
|
|
|
\end{solution}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\vfill
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\problem{}<general_inverse>
|
|
|
|
In general, how can we find the inverse of $a \pmod{p}$?\\
|
|
|
|
(Assume $p$ is prime.)
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\begin{solution}
|
|
|
|
We need an $a^\star$ so that $a \times a^\star \equiv 1 \pmod{m}$. \\
|
|
|
|
This means that $aa^\star - mk = 1$. \\
|
|
|
|
Since $p$ is prime, $\gcd(a, m) = 1$, and $aa^\star - mk = \gcd(a, m)$ \\
|
|
|
|
Now use the Extended Euclidean Algorithm from \ref{extend_e_algorithm} to find $a^\star$.
|
|
|
|
\end{solution}
|
2022-11-13 13:02:25 -08:00
|
|
|
|
2023-05-03 11:15:35 -07:00
|
|
|
\vfill
|
|
|
|
\pagebreak
|
2022-11-13 13:02:25 -08:00
|
|
|
|