\section{Modular Arithmetic} \definition{} We say that $a, b$ are equivalent mod $m$ if $m$ divides $a - b$. \\ If $a$ is equivalent to $b$ mod $m$, we write $a \equiv b \pmod{m}$. \\ You can think of $b$ as the remainder of $a \div m$: \begin{itemize} \item[] $32 \equiv 2 \pmod{6}$ \item[] $4 \equiv 4 \pmod{6}$ \item[] $-2 \equiv 4 \pmod{6}$ \end{itemize} \problem{} Complete the following: \begin{itemize} \item[] $87 \equiv ? \pmod{12}$ \hspace{3em} \textcolor{gray}{(Your answer should be between $0$ and $12$)} \item[] $13 \equiv 2 \pmod{?}$ \item[] $? \equiv 1 \pmod{9}$ \end{itemize} \begin{solution} \begin{itemize} \item[] $87 \equiv 3 \pmod{12}$ \item[] $13 \equiv 2 \pmod{11}$ \item[] $(9k + 1) \equiv 1 \pmod{9}\ \forall k \in \mathbb{Z}$ \end{itemize} \end{solution} \vfill \definition{} The inverse of $a$ mod $m$ is an integer $a^\star$ so that \\ $a \times a^\star \equiv 1 \pmod{m}$. \\ Note that not every $a$ has an inverse mod $m$. \theorem{} $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\ \textcolor{gray}{\textit{The proof of this theorem is left as a challenge problem.}} \problem{D\'ej\`a vu?} Find the inverse of $20 \pmod{14}$, if one exists. \\ Find the inverse of $34 \pmod{541}$, if one exists. \begin{solution} $20^\star$ does not exist mod $14$, by \ref{mod_has_inverse}. \\ $34^\star \equiv -175 \equiv 366 \pmod{541}$. See \ref{general_inverse} for an explanation. \end{solution} \vfill \problem{} In general, how can we find the inverse of $a \pmod{p}$?\\ (Assume $p$ is prime.) \begin{solution} We need an $a^\star$ so that $a \times a^\star \equiv 1 \pmod{m}$. \\ This means that $aa^\star - mk = 1$. \\ Since $p$ is prime, $\gcd(a, m) = 1$, and $aa^\star - mk = \gcd(a, m)$ \\ Now use the Extended Euclidean Algorithm from \ref{extend_e_algorithm} to find $a^\star$. \end{solution} \vfill \pagebreak