2023-04-03 11:13:33 -07:00
\section { Spaces}
2023-04-04 15:03:15 -07:00
\definition { }
2023-03-26 20:00:14 -07:00
A \textit { space} over a field $ \mathbb { F } $ consists of the following elements:
\begin { itemize} [itemsep = 2mm]
\item A set $ V $ , the elements of which are called \textit { vectors}
\item An operation called \textit { vector addition} , denoted $ + $ \\
Vector addition operates on two elements of $ V $ . \\
2023-04-03 11:13:33 -07:00
\item An operation called \textit { scalar multiplication} , denoted $ \times $ \\
2023-03-26 20:00:14 -07:00
Scalar multiplication multiplies an element of $ V $ by an element of $ \mathbb { F } $ . \\
Any element of $ \mathbb { F } $ is called a \textit { scalar} .
\end { itemize}
\vspace { 2mm}
\textbf { Note:}
The same symbols are used for additions and multiplications in both $ \mathbb { F } $ and $ V $ . \\
2023-04-04 12:55:38 -07:00
\textit { These are different operations} , so be aware of the context of each $ + $ and $ \times $ .
2023-03-26 20:00:14 -07:00
\vspace { 5mm}
Vector addition and multiplication must have the following properties. \\
2023-04-04 12:55:38 -07:00
In both tables, $ x, y, z \in V $ and $ a, b \in \mathbb { F } $ .
2023-03-26 20:00:14 -07:00
\vspace { 2mm}
% [t] and \vspace{0pt} ensure alignment at top
\begin { minipage} [t]{ 0.48\textwidth } \vspace { 0pt}
\begin { center}
\begin { tabular} { l | r@{ =} l }
\hline
\multicolumn { 3} { |c|} { Properties of vector addition} \\
\hline
Closure & \multicolumn { 2} { c} { $ x + y \in V $ } \\
Associativity & $ ( x + y ) + z~ $ & $ ~x + y + z $ \\
Commutativity & $ x + y~ $ & $ ~y + x $ \\
Distributivity & $ x ( y + z ) ~ $ & $ ~xy + xz $ \\
Identity & $ x + 0 ~ $ & $ ~x $ \\
Inverse & $ x + ( - x ) ~ $ & $ ~ 0 $
\end { tabular}
\end { center}
\end { minipage} %
\hfill %
\begin { minipage} [t]{ 0.48\textwidth } \vspace { 0pt}
\begin { center}
\begin { tabular} { l | r@{ =} l }
\hline
2023-04-04 15:03:15 -07:00
\multicolumn { 3} { |c|} { Properties of scalar multiplication} \\
2023-03-26 20:00:14 -07:00
\hline
Closure & \multicolumn { 2} { c} { $ ax \in V $ } \\
Distributivity & $ a ( x + y ) ~ $ & $ ~ax + ay $ \\
& $ ( a + b ) x~ $ & $ ~ax + bx $ \\
2023-04-04 12:55:38 -07:00
Compatibility$ ^ * $ & $ ( ab ) x~ $ & $ ~a ( bx ) $ \\
2023-03-26 20:00:14 -07:00
Identity & $ a + 0 ~ $ & $ ~a $
\end { tabular}
\end { center}
\end { minipage}
2023-04-04 12:55:38 -07:00
\vspace { 2mm}
2023-04-04 15:03:15 -07:00
$ ^ * $ Remember that $ a, b \in \mathbb { F } $ and $ x \in V $ . Thus, $ ( ab ) $ is multiplication in $ \mathbb { F } $ and $ ( bx ) $ is scalar multiplication in $ V $ . Compatibility is \textit { not} associativity. \\
2023-04-04 12:55:38 -07:00
2023-04-04 15:03:15 -07:00
Likewise, the addition you see in the distributive property of multiplication is field addition, not vector addition.
2023-03-26 20:00:14 -07:00
2023-04-04 15:03:15 -07:00
\vspace { 6mm}
Usually, the word \textit { vector} refers to an element of $ \mathbb { R } ^ n $ . As you might expect $ \mathbb { R } ^ n $ is a vector space over the field $ \mathbb { R } $ under our usual vector operations.
Here's a quick review of these operations:
2023-03-26 20:00:14 -07:00
\begin { itemize}
\item Scalar multiplication is done elementwise: $ 3 \times [ a, b, c ] = [ 3 a, 3 b, 3 c ] $ .
\item Vector addition is similar: $ [ a, b, c ] + [ 1 , 2 , 3 ] = [ a + 1 ,~b + 2 ,~c + 3 ] $ .
\item Vector addition is not valid for vectors of different sizes.
\end { itemize}
2023-04-04 15:03:15 -07:00
\problem { }
Verify that $ \mathbb { R } ^ n $ is a vector space over $ \mathbb { R } $ under these operations.
2023-03-26 20:00:14 -07:00
2023-04-04 15:03:15 -07:00
\vfill
\pagebreak
We can also define an \textit { inner product} or \textit { vector product} that takes two elements of $ V $ and produces another. \\
When we work in $ \mathbb { R } ^ n $ , we usually use the dot product as our vector product. It is defined as follows: \\
\definition { Dot Product}
Given two vectors $ a, b \in \mathbb { R } ^ n $ , the \textit { dot product} of $ a $ and $ b $ (written $ a \cdot b $ or $ \langle a, b \rangle $ ) is $ \sum _ 1 ^ n a _ ib _ i $ .
2023-03-26 20:00:14 -07:00
\vspace { 2mm}
2023-04-04 15:03:15 -07:00
For example, if $ a = [ 1 , 2 , 3 ] $ and $ b = [ 4 , 5 , 6 ] $ ,
2023-03-26 20:00:14 -07:00
$$
2023-04-04 15:03:15 -07:00
\langle a, b \rangle = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
2023-03-26 20:00:14 -07:00
$$
2023-04-04 15:03:15 -07:00
As you may expect, the dot product $ \langle a, b \rangle $ is valid iff $ a $ and $ b $ are the same size.
2023-03-26 20:00:14 -07:00
\problem { }
2023-04-04 15:03:15 -07:00
Show that the dot product is commutative.
\vfill
\problem { }
Show that the dot product is positive-definite. \\
This means that $ \langle a, a \rangle > 0 $ unless $ a = 0 $ .
2023-03-26 20:00:14 -07:00
\vfill
\pagebreak