Added action plot generator
parent
2706a0af3f
commit
e76a78d199
|
@ -0,0 +1,119 @@
|
|||
from pathlib import Path
|
||||
import torch
|
||||
from celeste import Celeste
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from collections import namedtuple
|
||||
|
||||
|
||||
compute_device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu"
|
||||
)
|
||||
|
||||
|
||||
# Celeste env properties
|
||||
n_observations = len(Celeste.state_number_map)
|
||||
n_actions = len(Celeste.action_space)
|
||||
|
||||
|
||||
# Outline our network
|
||||
class DQN(torch.nn.Module):
|
||||
def __init__(self, n_observations: int, n_actions: int):
|
||||
super(DQN, self).__init__()
|
||||
|
||||
self.layers = torch.nn.Sequential(
|
||||
torch.nn.Linear(n_observations, 128),
|
||||
torch.nn.ReLU(),
|
||||
|
||||
torch.nn.Linear(128, 128),
|
||||
torch.nn.ReLU(),
|
||||
|
||||
torch.nn.Linear(128, 128),
|
||||
torch.nn.ReLU(),
|
||||
|
||||
torch.torch.nn.Linear(128, n_actions)
|
||||
)
|
||||
|
||||
# Can be called with one input, or with a batch.
|
||||
#
|
||||
# Returns tensor(
|
||||
# [ Q(s, left), Q(s, right) ], ...
|
||||
# )
|
||||
#
|
||||
# Recall that Q(s, a) is the (expected) return of taking
|
||||
# action `a` at state `s`
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
policy_net = DQN(
|
||||
n_observations,
|
||||
n_actions
|
||||
).to(compute_device)
|
||||
|
||||
target_net = DQN(
|
||||
n_observations,
|
||||
n_actions
|
||||
).to(compute_device)
|
||||
|
||||
optimizer = torch.optim.AdamW(
|
||||
policy_net.parameters(),
|
||||
lr = 0.01, # Hyperparameter: learning rate
|
||||
amsgrad = True
|
||||
)
|
||||
|
||||
Transition = namedtuple(
|
||||
"Transition",
|
||||
(
|
||||
"state",
|
||||
"action",
|
||||
"next_state",
|
||||
"reward"
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
def makeplt(i, net):
|
||||
p = np.zeros((128, 128), dtype=np.float32)
|
||||
|
||||
for r in range(len(p)):
|
||||
for c in range(len(p[r])):
|
||||
with torch.no_grad():
|
||||
k = net(
|
||||
torch.tensor(
|
||||
[c, r, 60, 80],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0)
|
||||
)[0][i].item()
|
||||
|
||||
p[r][c] = k
|
||||
return p
|
||||
|
||||
|
||||
for i in Path("out/model_images").iterdir():
|
||||
|
||||
|
||||
checkpoint = torch.load(i)
|
||||
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
||||
|
||||
|
||||
fig, axs = plt.subplots(2, 4, figsize = (15, 10))
|
||||
|
||||
for a in range(len(axs.ravel())):
|
||||
ax = axs.ravel()[a]
|
||||
ax.set(adjustable="box", aspect="equal")
|
||||
plot = ax.pcolor(
|
||||
makeplt(a, policy_net),
|
||||
cmap = "Greens_r",
|
||||
vmin = 0,
|
||||
vmax = 20
|
||||
)
|
||||
ax.set_title(Celeste.action_space[a])
|
||||
ax.invert_yaxis()
|
||||
fig.colorbar(plot)
|
||||
print(i)
|
||||
fig.savefig(f"out/{i.stem}.png")
|
||||
plt.close()
|
Reference in New Issue