2024-01-23 21:21:31 -08:00

272 lines
6.3 KiB
Rust

use anyhow::{bail, Context, Result};
use galactica_util::to_radians;
use nalgebra::{Point2, Point3};
use std::collections::{HashMap, HashSet};
use crate::{
handle::SpriteHandle, util::Polar, Content, ContentBuildContext, SystemHandle,
SystemObjectHandle,
};
pub(crate) mod syntax {
use serde::Deserialize;
use std::collections::HashMap;
// Raw serde syntax structs.
// These are never seen by code outside this crate.
#[derive(Debug, Deserialize)]
pub struct System {
pub object: HashMap<String, Object>,
}
#[derive(Debug, Deserialize)]
pub struct Object {
pub sprite: String,
pub position: Position,
pub size: f32,
pub radius: Option<f32>,
pub angle: Option<f32>,
pub landable: Option<bool>,
pub name: Option<String>,
pub desc: Option<String>,
}
#[derive(Debug, Deserialize)]
#[serde(untagged)]
pub enum Position {
Polar(PolarCoords),
Cartesian(CoordinatesThree),
}
#[derive(Debug, Deserialize)]
pub struct PolarCoords {
pub center: CoordinatesTwo,
pub radius: f32,
pub angle: f32,
pub z: f32,
}
#[derive(Debug, Deserialize)]
#[serde(untagged)]
pub enum CoordinatesTwo {
Label(String),
Coords([f32; 2]),
}
impl ToString for CoordinatesTwo {
fn to_string(&self) -> String {
match self {
Self::Label(s) => s.to_owned(),
Self::Coords(v) => format!("{:?}", v),
}
}
}
#[derive(Debug, Deserialize)]
#[serde(untagged)]
pub enum CoordinatesThree {
Label(String),
Coords([f32; 3]),
}
impl ToString for CoordinatesThree {
fn to_string(&self) -> String {
match self {
Self::Label(s) => s.to_owned(),
Self::Coords(v) => format!("{:?}", v),
}
}
}
}
// Processed data structs.
// These are exported.
/// Represents a star system
#[derive(Debug, Clone)]
pub struct System {
/// This star system's name
pub name: String,
/// This star system's handle
pub handle: SystemHandle,
/// Objects in this system
pub objects: Vec<SystemObject>,
}
/// Represents an orbiting body in a star system
/// (A star, planet, moon, satellite, etc)
/// These may be landable and may be decorative.
/// System objects to not interact with the physics engine.
#[derive(Debug, Clone)]
pub struct SystemObject {
/// This object's sprite
pub sprite: SpriteHandle,
/// This object's handle
pub handle: SystemObjectHandle,
/// This object's size.
/// Measured as height in game units.
/// This value is scaled for distance
/// (i.e, the z-value of position)
pub size: f32,
/// This object's position, in game coordinates,
/// relative to the system's center (0, 0).
pub pos: Point3<f32>,
/// This object's sprite's angle, in radians
pub angle: f32,
/// If true, ships may land on this object
pub landable: bool,
/// The display name of this object
pub name: String,
/// The description of this object
pub desc: String,
}
/// Helper function for resolve_position, never called on its own.
fn resolve_coordinates(
objects: &HashMap<String, syntax::Object>,
cor: &syntax::CoordinatesThree,
mut cycle_detector: HashSet<String>,
) -> Result<Point3<f32>> {
match cor {
syntax::CoordinatesThree::Coords(c) => Ok((*c).into()),
syntax::CoordinatesThree::Label(l) => {
if cycle_detector.contains(l) {
bail!(
"Found coordinate cycle: `{}`",
cycle_detector.iter().fold(String::new(), |sum, a| {
if sum.is_empty() {
a.to_string()
} else {
sum + " -> " + a
}
})
);
}
cycle_detector.insert(l.to_owned());
let p = match objects.get(l) {
Some(p) => p,
None => bail!("Could not resolve coordinate label `{l}`"),
};
Ok(resolve_position(&objects, &p, cycle_detector)
.with_context(|| format!("in object {:#?}", l))?)
}
}
}
/// Given an object, resolve its position as a Point3.
fn resolve_position(
objects: &HashMap<String, syntax::Object>,
obj: &syntax::Object,
cycle_detector: HashSet<String>,
) -> Result<Point3<f32>> {
match &obj.position {
syntax::Position::Cartesian(c) => Ok(resolve_coordinates(objects, &c, cycle_detector)?),
syntax::Position::Polar(p) => {
let three = match &p.center {
syntax::CoordinatesTwo::Label(s) => syntax::CoordinatesThree::Label(s.clone()),
syntax::CoordinatesTwo::Coords(v) => {
syntax::CoordinatesThree::Coords([v[0], v[1], f32::NAN])
}
};
let r = resolve_coordinates(&objects, &three, cycle_detector)?;
let plane = Polar {
center: Point2::new(r.x, r.y),
radius: p.radius,
angle: to_radians(p.angle),
}
.to_cartesian();
Ok(Point3::new(plane.x, plane.y, p.z))
}
}
}
impl crate::Build for System {
type InputSyntaxType = HashMap<String, syntax::System>;
fn build(
system: Self::InputSyntaxType,
_build_context: &mut ContentBuildContext,
content: &mut Content,
) -> Result<()> {
for (system_name, system) in system {
let mut objects = Vec::new();
let system_handle = SystemHandle {
index: content.systems.len(),
};
for (label, obj) in &system.object {
let mut cycle_detector = HashSet::new();
cycle_detector.insert(label.clone());
let sprite_handle = match content.sprite_index.get(&obj.sprite) {
None => bail!(
"In system `{}`: sprite `{}` doesn't exist",
system_name,
obj.sprite
),
Some(t) => *t,
};
objects.push(SystemObject {
sprite: sprite_handle,
pos: resolve_position(&system.object, &obj, cycle_detector)
.with_context(|| format!("in object {:#?}", label))?,
size: obj.size,
angle: to_radians(obj.angle.unwrap_or(0.0)),
handle: SystemObjectHandle {
system_handle,
body_index: 0,
},
landable: obj.landable.unwrap_or(false),
name: obj
.name
.as_ref()
.map(|x| x.clone())
.unwrap_or("".to_string()),
// TODO: better linebreaks, handle double spaces
// Tabs
desc: obj
.desc
.as_ref()
.map(|x| x.replace("\n", " ").replace("<br>", "\n"))
.unwrap_or("".to_string()),
});
}
// Sort by z-distance. This is important, since these are
// rendered in this order. We need far objects to be behind
// near objects!
objects.sort_by(|a, b| b.pos.z.total_cmp(&a.pos.z));
// Update object handles
let mut i = 0;
for o in &mut objects {
o.handle.body_index = i;
i += 1;
}
content.systems.push(Self {
handle: system_handle,
name: system_name,
objects,
});
}
return Ok(());
}
}