110 lines
3.1 KiB
Plaintext
110 lines
3.1 KiB
Plaintext
// INCLUDE: global uniform header
|
|
|
|
struct InstanceInput {
|
|
@location(2) anchor: u32,
|
|
@location(3) position: vec2<f32>,
|
|
@location(4) diameter: f32,
|
|
@location(5) stroke: f32,
|
|
@location(6) angle: f32,
|
|
@location(7) color: vec4<f32>,
|
|
};
|
|
|
|
struct VertexInput {
|
|
@location(0) position: vec3<f32>,
|
|
@location(1) texture_coords: vec2<f32>,
|
|
};
|
|
|
|
struct VertexOutput {
|
|
@builtin(position) position: vec4<f32>,
|
|
@location(2) center: vec2<f32>,
|
|
@location(3) diameter: f32,
|
|
@location(4) stroke: f32,
|
|
@location(5) angle: f32,
|
|
@location(6) color: vec4<f32>,
|
|
};
|
|
|
|
|
|
@group(0) @binding(0)
|
|
var texture_array: binding_array<texture_2d<f32>>;
|
|
@group(0) @binding(1)
|
|
var sampler_array: binding_array<sampler>;
|
|
|
|
|
|
// INCLUDE: anchor.wgsl
|
|
|
|
@vertex
|
|
fn vertex_main(
|
|
vertex: VertexInput,
|
|
instance: InstanceInput,
|
|
) -> VertexOutput {
|
|
var out: VertexOutput;
|
|
out.position = vec4(vertex.position, 1.0);
|
|
out.diameter = instance.diameter;
|
|
out.stroke = instance.stroke;
|
|
out.color = instance.color;
|
|
out.angle = instance.angle;
|
|
|
|
// Center of this radial bar, in logical pixels,
|
|
// with (0, 0) at the center of the screen.
|
|
out.center = anchor(
|
|
instance.anchor,
|
|
instance.position,
|
|
vec2(instance.diameter, instance.diameter)
|
|
) / 2.0 * (global_data.window_size / global_data.window_scale.x);
|
|
// ^ slight correction, since anchor gives us a different result than we need here
|
|
|
|
return out;
|
|
}
|
|
|
|
@fragment
|
|
fn fragment_main(in: VertexOutput) -> @location(0) vec4<f32> {
|
|
// Fragment position in logical pixels, relative to arc center
|
|
let p = (
|
|
vec2(1.0, -1.0) *
|
|
(in.position.xy - global_data.window_size / 2.0) /
|
|
global_data.window_scale.x
|
|
) - in.center;
|
|
|
|
let bar_width = in.stroke; // Width of filled bar
|
|
let bar_radius = in.diameter / 2.0 - bar_width / 2.0; // Middle radius of the bar
|
|
let angle = in.angle - floor(in.angle / 6.283) * 6.28318; // Sanely handle large angles (fmod(angle, 2pi))
|
|
let zero_vector = vec2(0.0, 1.0); // Draw bar clockwise from this vector
|
|
let frag_radius = distance(vec2(0.0, 0.0), p); // Radius of this fragment
|
|
let feather = 2.0; // Size of feather, in logical pixels
|
|
|
|
// Clockwise angle between zero_vector and fragment location
|
|
let frag_angle = atan2(
|
|
p.y*zero_vector.x - p.x*zero_vector.y,
|
|
-dot(p, zero_vector)
|
|
) + 3.14159;
|
|
|
|
|
|
// Line fill & feather
|
|
if abs(frag_radius - bar_radius) <= bar_width / 2.0 && frag_angle <= angle {
|
|
let x = (abs(frag_radius - bar_radius) - (bar_width/2.0 - feather)) / feather;
|
|
return in.color * vec4(1.0, 1.0, 1.0, clamp(1.0 - x, 0.0, 1.0));
|
|
}
|
|
|
|
// Round cap centers
|
|
let cap_start_center = zero_vector * (in.diameter / 2.0 - (bar_width / 2.0));
|
|
let cap_end_center = mat2x2(
|
|
vec2(cos(-angle), sin(-angle)),
|
|
vec2(-sin(-angle), cos(-angle))
|
|
) * cap_start_center;
|
|
|
|
// Cap fill & feather
|
|
let cap_start_d = distance(p, cap_start_center);
|
|
let cap_end_d = distance(p, cap_end_center);
|
|
if (
|
|
cap_start_d <= bar_width / 2.0 ||
|
|
cap_end_d <= bar_width / 2.0
|
|
) {
|
|
let x = (
|
|
min(cap_start_d, cap_end_d)
|
|
- (bar_width/2.0 - feather)
|
|
) / feather;
|
|
return in.color * vec4(1.0, 1.0, 1.0, clamp(1.0 - x, 0.0, 1.0));
|
|
}
|
|
|
|
discard;
|
|
} |