Galactica/crates/render/src/gpustate.rs
2024-01-02 19:11:18 -08:00

665 lines
19 KiB
Rust

use anyhow::Result;
use bytemuck;
use cgmath::{Deg, EuclideanSpace, Matrix4, Point2, Vector3};
use galactica_constants;
use std::{iter, rc::Rc, time::Instant};
use wgpu;
use winit::{self, dpi::LogicalSize, window::Window};
use crate::{
content,
globaldata::{GlobalData, GlobalDataContent},
pipeline::PipelineBuilder,
sprite::{ObjectSubSprite, ParticleBuilder},
starfield::Starfield,
texturearray::TextureArray,
vertexbuffer::{
consts::{SPRITE_INDICES, SPRITE_VERTICES},
types::{ObjectInstance, ParticleInstance, StarfieldInstance, TexturedVertex, UiInstance},
BufferObject, VertexBuffer,
},
ObjectSprite, UiSprite, OPENGL_TO_WGPU_MATRIX,
};
/// A high-level GPU wrapper. Consumes game state,
/// produces pretty pictures.
pub struct GPUState {
/// The window to we draw on
pub window: Window,
/// The size of the window we draw on
pub window_size: winit::dpi::PhysicalSize<u32>,
device: wgpu::Device,
config: wgpu::SurfaceConfiguration,
surface: wgpu::Surface,
queue: wgpu::Queue,
window_aspect: f32,
object_pipeline: wgpu::RenderPipeline,
starfield_pipeline: wgpu::RenderPipeline,
particle_pipeline: wgpu::RenderPipeline,
ui_pipeline: wgpu::RenderPipeline,
starfield: Starfield,
texture_array: TextureArray,
global_data: GlobalData,
vertex_buffers: VertexBuffers,
}
struct VertexBuffers {
object: Rc<VertexBuffer>,
starfield: Rc<VertexBuffer>,
ui: Rc<VertexBuffer>,
/// The index of the next particle slot we'll write to.
/// This must cycle to 0 whenever it exceeds the size
/// of the particle instance array.
particle_array_head: u64,
particle: Rc<VertexBuffer>,
}
impl GPUState {
/// Make a new GPUState that draws on `window`
pub async fn new(window: Window, ct: &content::Content) -> Result<Self> {
let window_size = window.inner_size();
let window_aspect = window_size.width as f32 / window_size.height as f32;
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::all(),
..Default::default()
});
let surface = unsafe { instance.create_surface(&window) }.unwrap();
// Basic setup
let device;
let queue;
let config;
{
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
(device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::TEXTURE_BINDING_ARRAY | wgpu::Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING,
// We may need limits if we compile for wasm
limits: wgpu::Limits::default(),
label: Some("gpu device"),
},
None,
)
.await
.unwrap();
// Assume sRGB
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.filter(|f| f.is_srgb())
.filter(|f| f.has_stencil_aspect())
.next()
.unwrap_or(surface_caps.formats[0]);
config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: window_size.width,
height: window_size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
};
surface.configure(&device, &config);
}
let vertex_buffers = VertexBuffers {
object: Rc::new(VertexBuffer::new::<TexturedVertex, ObjectInstance>(
"object",
&device,
Some(SPRITE_VERTICES),
Some(SPRITE_INDICES),
galactica_constants::OBJECT_SPRITE_INSTANCE_LIMIT,
)),
starfield: Rc::new(VertexBuffer::new::<TexturedVertex, StarfieldInstance>(
"starfield",
&device,
Some(SPRITE_VERTICES),
Some(SPRITE_INDICES),
galactica_constants::STARFIELD_SPRITE_INSTANCE_LIMIT,
)),
ui: Rc::new(VertexBuffer::new::<TexturedVertex, UiInstance>(
"ui",
&device,
Some(SPRITE_VERTICES),
Some(SPRITE_INDICES),
galactica_constants::UI_SPRITE_INSTANCE_LIMIT,
)),
particle_array_head: 0,
particle: Rc::new(VertexBuffer::new::<TexturedVertex, ParticleInstance>(
"particle",
&device,
Some(SPRITE_VERTICES),
Some(SPRITE_INDICES),
galactica_constants::PARTICLE_SPRITE_INSTANCE_LIMIT,
)),
};
// Load uniforms
let global_data = GlobalData::new(&device);
let texture_array = TextureArray::new(&device, &queue, ct)?;
// Make sure these match the indices in each shader
let bind_group_layouts = &[
&texture_array.bind_group_layout,
&global_data.bind_group_layout,
];
// Create render pipelines
let object_pipeline = PipelineBuilder::new("object", &device)
.set_shader(include_str!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/shaders/",
"object.wgsl"
)))
.set_format(config.format)
.set_triangle(true)
.set_vertex_buffer(&vertex_buffers.object)
.set_bind_group_layouts(bind_group_layouts)
.build();
let starfield_pipeline = PipelineBuilder::new("starfield", &device)
.set_shader(include_str!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/shaders/",
"starfield.wgsl"
)))
.set_format(config.format)
.set_triangle(true)
.set_vertex_buffer(&vertex_buffers.starfield)
.set_bind_group_layouts(bind_group_layouts)
.build();
let ui_pipeline = PipelineBuilder::new("ui", &device)
.set_shader(include_str!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/shaders/",
"ui.wgsl"
)))
.set_format(config.format)
.set_triangle(true)
.set_vertex_buffer(&vertex_buffers.ui)
.set_bind_group_layouts(bind_group_layouts)
.build();
let particle_pipeline = PipelineBuilder::new("particle", &device)
.set_shader(include_str!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/shaders/",
"particle.wgsl"
)))
.set_format(config.format)
.set_triangle(true)
.set_vertex_buffer(&vertex_buffers.particle)
.set_bind_group_layouts(bind_group_layouts)
.build();
let mut starfield = Starfield::new();
starfield.regenerate();
return Ok(Self {
device,
config,
surface,
queue,
window,
window_size,
window_aspect,
object_pipeline,
starfield_pipeline,
ui_pipeline,
particle_pipeline,
starfield,
texture_array,
global_data,
vertex_buffers,
});
}
/// Get the window this GPUState is attached to
pub fn window(&self) -> &Window {
&self.window
}
/// Update window size.
/// This should be called whenever our window is resized.
pub fn resize(&mut self) {
let new_size = self.window.inner_size();
if new_size.width > 0 && new_size.height > 0 {
self.window_size = new_size;
self.window_aspect = new_size.width as f32 / new_size.height as f32;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
self.update_starfield_buffer()
}
/// Create a ObjectInstance for an object and add it to `instances`.
/// Also handles child sprites.
fn push_object_sprite(
&self,
camera_zoom: f32,
camera_pos: Point2<f32>,
instances: &mut Vec<ObjectInstance>,
clip_ne: Point2<f32>,
clip_sw: Point2<f32>,
s: &ObjectSprite,
) {
// Position adjusted for parallax
// TODO: adjust parallax for zoom?
let pos: Point2<f32> = {
(Point2 {
x: s.pos.x,
y: s.pos.y,
} - camera_pos.to_vec())
/ s.pos.z
};
let texture = self.texture_array.get_texture(s.texture);
// Game dimensions of this sprite post-scale.
// Don't divide by 2, we use this later.
let height = s.size / s.pos.z;
// Width or height, whichever is larger.
// Accounts for sprite rotation.
let m = height * texture.aspect.max(1.0);
// Don't draw (or compute matrices for)
// sprites that are off the screen
if pos.x < clip_ne.x - m
|| pos.y > clip_ne.y + m
|| pos.x > clip_sw.x + m
|| pos.y < clip_sw.y - m
{
return;
}
// TODO: clean up
let scale = height / camera_zoom;
// Note that our mesh starts centered at (0, 0).
// This is essential---we do not want scale and rotation
// changing our sprite's position!
// Apply sprite aspect ratio, preserving height.
// This must be done *before* rotation.
//
// We apply the provided scale here as well as a minor optimization
let sprite_aspect_and_scale =
Matrix4::from_nonuniform_scale(texture.aspect * scale, scale, 1.0);
// Apply rotation
let rotate = Matrix4::from_angle_z(s.angle);
// Apply screen aspect ratio, again preserving height.
// This must be done AFTER rotation... think about it!
let screen_aspect = Matrix4::from_nonuniform_scale(1.0 / self.window_aspect, 1.0, 1.0);
// After finishing all ops, translate.
// This must be done last, all other operations
// require us to be at (0, 0).
//
// Note that we divide camera zoom by two.
// THIS IS IMPORTANT!
// The height of the viewport is `zoom` in game units,
// but it's 2 in screen units! (since coordinates range from -1 to 1)
let translate = Matrix4::from_translation(Vector3 {
x: pos.x / (camera_zoom / 2.0) / self.window_aspect,
y: pos.y / (camera_zoom / 2.0),
z: 0.0,
});
// Order matters!
// The rightmost matrix is applied first.
let t =
OPENGL_TO_WGPU_MATRIX * translate * screen_aspect * rotate * sprite_aspect_and_scale;
instances.push(ObjectInstance {
transform: t.into(),
texture_index: texture.index,
});
// Add children
if let Some(children) = &s.children {
for c in children {
self.push_object_subsprite(camera_zoom, instances, c, pos, s.angle);
}
}
}
/// Add an object sprite's subsprite to `instances`.
/// Only called by `self.push_object_sprite`.
fn push_object_subsprite(
&self,
camera_zoom: f32,
instances: &mut Vec<ObjectInstance>,
s: &ObjectSubSprite,
parent_pos: Point2<f32>,
parent_angle: Deg<f32>,
) {
let texture = self.texture_array.get_texture(s.texture);
let scale = s.size / (s.pos.z * camera_zoom);
let sprite_aspect_and_scale =
Matrix4::from_nonuniform_scale(texture.aspect * scale, scale, 1.0);
let rotate = Matrix4::from_angle_z(s.angle);
let screen_aspect = Matrix4::from_nonuniform_scale(1.0 / self.window_aspect, 1.0, 1.0);
let ptranslate = Matrix4::from_translation(Vector3 {
x: parent_pos.x / (camera_zoom / 2.0) / self.window_aspect,
y: parent_pos.y / (camera_zoom / 2.0),
z: 0.0,
});
let protate = Matrix4::from_angle_z(parent_angle);
let translate = Matrix4::from_translation(Vector3 {
x: s.pos.x / (camera_zoom / 2.0) / self.window_aspect,
y: s.pos.y / (camera_zoom / 2.0),
z: 0.0,
});
// Order matters!
// The rightmost matrix is applied first.
let t = OPENGL_TO_WGPU_MATRIX
* ptranslate * screen_aspect
* protate * translate
* rotate * sprite_aspect_and_scale;
instances.push(ObjectInstance {
transform: t.into(),
texture_index: texture.index,
});
}
/// Create a ObjectInstance for a ui sprite and add it to `instances`
fn push_ui_sprite(&self, instances: &mut Vec<UiInstance>, s: &UiSprite) {
let logical_size: LogicalSize<f32> =
self.window_size.to_logical(self.window.scale_factor());
let texture = self.texture_array.get_texture(s.texture);
let width = s.dimensions.x;
let height = s.dimensions.y;
// Compute square scale, since we must apply screen aspect ratio
// AFTER rotation.
let scale = Matrix4::from_nonuniform_scale(
width / logical_size.height,
height / logical_size.height,
1.0,
);
let rotate = Matrix4::from_angle_z(s.angle);
let translate = Matrix4::from_translation(match s.pos {
super::AnchoredUiPosition::NwC(p) => Vector3 {
// Note the signs. Positive y points north!
x: -1.0 + p.x / (logical_size.width / 2.0),
y: 1.0 + p.y / (logical_size.height / 2.0),
z: 0.0,
},
super::AnchoredUiPosition::NwNw(p) => Vector3 {
x: -1.0 + (width / 2.0 + p.x) / (logical_size.width / 2.0),
y: 1.0 - (height / 2.0 - p.y) / (logical_size.height / 2.0),
z: 0.0,
},
super::AnchoredUiPosition::NwNe(p) => Vector3 {
x: -1.0 - (width / 2.0 - p.x) / (logical_size.width / 2.0),
y: 1.0 - (height / 2.0 - p.y) / (logical_size.height / 2.0),
z: 0.0,
},
super::AnchoredUiPosition::NwSw(p) => Vector3 {
x: -1.0 + (width / 2.0 + p.x) / (logical_size.width / 2.0),
y: 1.0 + (height / 2.0 + p.y) / (logical_size.height / 2.0),
z: 0.0,
},
super::AnchoredUiPosition::NwSe(p) => Vector3 {
x: -1.0 - (width / 2.0 - p.x) / (logical_size.width / 2.0),
y: 1.0 + (height / 2.0 + p.y) / (logical_size.height / 2.0),
z: 0.0,
},
});
let screen_aspect = Matrix4::from_nonuniform_scale(1.0 / self.window_aspect, 1.0, 1.0);
instances.push(UiInstance {
transform: (OPENGL_TO_WGPU_MATRIX * translate * screen_aspect * rotate * scale).into(),
texture_index: texture.index,
color: s.color.unwrap_or([1.0, 1.0, 1.0, 1.0]),
});
}
/// Make an instance for all the game's sprites
/// (Objects and UI)
/// This will Will panic if any X_SPRITE_INSTANCE_LIMIT is exceeded.
fn update_sprite_instances(
&self,
camera_zoom: f32,
camera_pos: Point2<f32>,
objects: &Vec<ObjectSprite>,
ui: &Vec<UiSprite>,
) -> (usize, usize) {
let mut object_instances: Vec<ObjectInstance> = Vec::new();
// Game coordinates (relative to camera) of ne and sw corners of screen.
// Used to skip off-screen sprites.
let clip_ne = Point2::from((-self.window_aspect, 1.0)) * camera_zoom;
let clip_sw = Point2::from((self.window_aspect, -1.0)) * camera_zoom;
for s in objects {
self.push_object_sprite(
camera_zoom,
camera_pos,
&mut object_instances,
clip_ne,
clip_sw,
s,
);
}
// Enforce sprite limit
if object_instances.len() as u64 > galactica_constants::OBJECT_SPRITE_INSTANCE_LIMIT {
// TODO: no panic, handle this better.
panic!("Sprite limit exceeded!")
}
self.queue.write_buffer(
&self.vertex_buffers.object.instances,
0,
bytemuck::cast_slice(&object_instances),
);
let mut ui_instances: Vec<UiInstance> = Vec::new();
for s in ui {
self.push_ui_sprite(&mut ui_instances, s);
}
if ui_instances.len() as u64 > galactica_constants::UI_SPRITE_INSTANCE_LIMIT {
panic!("Ui sprite limit exceeded!")
}
self.queue.write_buffer(
&self.vertex_buffers.ui.instances,
0,
bytemuck::cast_slice(&ui_instances),
);
return (object_instances.len(), ui_instances.len());
}
/// Make a StarfieldInstance for each star that needs to be drawn.
/// Will panic if STARFIELD_INSTANCE_LIMIT is exceeded.
///
/// Starfield data rarely changes, so this is called only when it's needed.
pub fn update_starfield_buffer(&mut self) {
self.queue.write_buffer(
&self.vertex_buffers.starfield.instances,
0,
bytemuck::cast_slice(&self.starfield.make_instances(self.window_aspect)),
);
}
/// Main render function. Draws sprites on a window.
pub fn render(
&mut self,
camera_pos: Point2<f32>,
camera_zoom: f32,
// TODO: clean this up, pass one struct
object_sprites: &Vec<ObjectSprite>,
ui_sprites: &Vec<UiSprite>,
new_particles: &mut Vec<ParticleBuilder>,
start_instant: Instant,
) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("render encoder"),
});
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("render pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
// TODO: handle overflow
let time_now = start_instant.elapsed().as_secs_f32();
// Update global values
self.queue.write_buffer(
&self.global_data.buffer,
0,
bytemuck::cast_slice(&[GlobalDataContent {
camera_position: camera_pos.into(),
camera_zoom: [camera_zoom, 0.0],
camera_zoom_limits: [galactica_constants::ZOOM_MIN, galactica_constants::ZOOM_MAX],
window_size: [
self.window_size.width as f32,
self.window_size.height as f32,
],
window_aspect: [self.window_aspect, 0.0],
starfield_texture: [self.texture_array.get_starfield_texture().index, 0],
starfield_tile_size: [galactica_constants::STARFIELD_SIZE as f32, 0.0],
starfield_size_limits: [
galactica_constants::STARFIELD_SIZE_MIN,
galactica_constants::STARFIELD_SIZE_MAX,
],
current_time: [time_now, 0.0],
}]),
);
for i in new_particles.iter() {
let texture = self.texture_array.get_texture(i.texture);
self.queue.write_buffer(
&self.vertex_buffers.particle.instances,
ParticleInstance::SIZE * self.vertex_buffers.particle_array_head,
bytemuck::cast_slice(&[ParticleInstance {
position: [i.pos.x, i.pos.y, 1.0],
size: i.size,
texture_index: texture.index,
expires: time_now + i.lifetime,
}]),
);
self.vertex_buffers.particle_array_head += 1;
if self.vertex_buffers.particle_array_head
== galactica_constants::PARTICLE_SPRITE_INSTANCE_LIMIT
{
self.vertex_buffers.particle_array_head = 0;
}
}
new_particles.clear();
// Create sprite instances
let (n_object, n_ui) =
self.update_sprite_instances(camera_zoom, camera_pos, object_sprites, ui_sprites);
// These should match the indices in each shader,
// and should each have a corresponding bind group layout.
render_pass.set_bind_group(0, &self.texture_array.bind_group, &[]);
render_pass.set_bind_group(1, &self.global_data.bind_group, &[]);
// Starfield pipeline
self.vertex_buffers.starfield.set_in_pass(&mut render_pass);
render_pass.set_pipeline(&self.starfield_pipeline);
render_pass.draw_indexed(
0..SPRITE_INDICES.len() as u32,
0,
0..self.starfield.instance_count,
);
// Sprite pipeline
self.vertex_buffers.object.set_in_pass(&mut render_pass);
render_pass.set_pipeline(&self.object_pipeline);
render_pass.draw_indexed(0..SPRITE_INDICES.len() as u32, 0, 0..n_object as _);
// Particle pipeline
self.vertex_buffers.particle.set_in_pass(&mut render_pass);
render_pass.set_pipeline(&self.particle_pipeline);
render_pass.draw_indexed(
0..SPRITE_INDICES.len() as u32,
0,
0..galactica_constants::PARTICLE_SPRITE_INSTANCE_LIMIT as _,
);
// Ui pipeline
self.vertex_buffers.ui.set_in_pass(&mut render_pass);
render_pass.set_pipeline(&self.ui_pipeline);
render_pass.draw_indexed(0..SPRITE_INDICES.len() as u32, 0, 0..n_ui as _);
// begin_render_pass borrows encoder mutably, so we can't call finish()
// without dropping this variable.
drop(render_pass);
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}