use anyhow::Result; use bytemuck; use cgmath::{Deg, Matrix4, Point2, Vector3}; use std::{iter, mem}; use wgpu::{self, util::DeviceExt}; use winit::{self, window::Window}; use super::texturearray::TextureArray; use crate::Sprite; pub struct GPUState { device: wgpu::Device, config: wgpu::SurfaceConfiguration, surface: wgpu::Surface, queue: wgpu::Queue, pub window: Window, pub size: winit::dpi::PhysicalSize, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, texture_array: TextureArray, instance_buffer: wgpu::Buffer, } #[rustfmt::skip] const OPENGL_TO_WGPU_MATRIX: Matrix4 = Matrix4::new( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0, ); struct Instance { transform: Transform, texture_index: u32, } impl Instance { fn to_raw(&self) -> InstanceRaw { InstanceRaw { model: (self.transform.build_view_projection_matrix()).into(), texture_index: self.texture_index, } } } #[repr(C)] #[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] struct InstanceRaw { model: [[f32; 4]; 4], texture_index: u32, } impl InstanceRaw { fn get_size() -> u64 { 20 } fn desc() -> wgpu::VertexBufferLayout<'static> { wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, // We need to switch from using a step mode of Vertex to Instance // This means that our shaders will only change to use the next // instance when the shader starts processing a new instance step_mode: wgpu::VertexStepMode::Instance, attributes: &[ // A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot // for each vec4. We'll have to reassemble the mat4 in the shader. wgpu::VertexAttribute { offset: 0, // While our vertex shader only uses locations 0, and 1 now, in later tutorials, we'll // be using 2, 3, and 4, for Vertex. We'll start at slot 5, not conflict with them later shader_location: 5, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress, shader_location: 6, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress, shader_location: 7, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress, shader_location: 8, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 16]>() as wgpu::BufferAddress, shader_location: 9, format: wgpu::VertexFormat::Uint32, }, ], } } } struct Transform { pos: Point2, aspect: f32, // width / height scale: f32, rotate: f32, // Around this object's center, in degrees measured ccw from vertical } impl Transform { fn build_view_projection_matrix(&self) -> Matrix4 { // Apply aspect ratio and scale let mut scale = Matrix4::from_nonuniform_scale(1.0, 1.0 / self.aspect, 1.0); scale = scale * Matrix4::from_scale(self.scale); // Our mesh starts at (0, 0), so this will rotate around the object's center. // Note that we translate AFTER scaling. let rotate = Matrix4::from_angle_z(Deg { 0: self.rotate }); let translate = Matrix4::from_translation(Vector3 { x: self.pos.x, y: self.pos.y, z: 0.0, }); // Order matters! // These are applied right-to-left return OPENGL_TO_WGPU_MATRIX * translate * rotate * scale; } } // Datatype for vertex buffer #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct Vertex { position: [f32; 3], tex_coords: [f32; 2], } impl Vertex { fn desc() -> wgpu::VertexBufferLayout<'static> { wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &[ wgpu::VertexAttribute { offset: 0, shader_location: 0, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress, shader_location: 1, format: wgpu::VertexFormat::Float32x2, }, ], } } } // This is centered at 0,0 intentionally, // so scaling works properly. const VERTICES: &[Vertex] = &[ Vertex { position: [-0.5, 0.5, 0.0], tex_coords: [0.0, 0.0], }, Vertex { position: [0.5, 0.5, 0.0], tex_coords: [1.0, 0.0], }, Vertex { position: [0.5, -0.5, 0.0], tex_coords: [1.0, 1.0], }, Vertex { position: [-0.5, -0.5, 0.0], tex_coords: [0.0, 1.0], }, ]; const INDICES: &[u16] = &[0, 3, 2, 0, 2, 1]; impl GPUState { // We can draw at most this many sprites on the screen. // TODO: compile-time option pub const SPRITE_LIMIT: u64 = 100; pub async fn new(window: Window) -> Result { let size = window.inner_size(); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::all(), ..Default::default() }); let surface = unsafe { instance.create_surface(&window) }.unwrap(); // Basic setup let device; let queue; let config; { let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { features: wgpu::Features::TEXTURE_BINDING_ARRAY | wgpu::Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING, // We may need limits if we compile for wasm limits: wgpu::Limits::default(), label: Some("gpu device"), }, None, ) .await .unwrap(); // Assume sRGB let surface_caps = surface.get_capabilities(&adapter); let surface_format = surface_caps .formats .iter() .copied() .filter(|f| f.is_srgb()) .filter(|f| f.has_stencil_aspect()) .next() .unwrap_or(surface_caps.formats[0]); config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], }; surface.configure(&device, &config); } // Load textures let texture_array = TextureArray::new(&device, &queue)?; // Render pipeline let render_pipeline; let render_pipeline_layout; { let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("sprite shader"), source: wgpu::ShaderSource::Wgsl( include_str!(concat!( env!("CARGO_MANIFEST_DIR"), "/src/render/shaders/", "shader.wgsl" )) .into(), ), }); render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("render pipeline layout"), bind_group_layouts: &[&texture_array.bind_group_layout], push_constant_ranges: &[], }); render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("render pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vertex_shader_main", buffers: &[Vertex::desc(), InstanceRaw::desc()], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fragment_shader_main", targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState::ALPHA_BLENDING), write_mask: wgpu::ColorWrites::ALL, })], }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), polygon_mode: wgpu::PolygonMode::Fill, unclipped_depth: false, conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, }); } let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("vertex buffer"), contents: bytemuck::cast_slice(VERTICES), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("vertex index buffer"), contents: bytemuck::cast_slice(INDICES), usage: wgpu::BufferUsages::INDEX, }); let instance_buffer = device.create_buffer(&wgpu::BufferDescriptor { label: Some("instance buffer"), usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST, size: InstanceRaw::get_size() * Self::SPRITE_LIMIT, mapped_at_creation: false, }); return Ok(Self { surface, device, queue, config, size, window, render_pipeline, vertex_buffer, index_buffer, instance_buffer, texture_array, }); } pub fn window(&self) -> &Window { &self.window } pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } } pub fn update(&mut self) {} pub fn render(&mut self, sprites: &Vec) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("sprite render encoder"), }); let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("sprite render pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.0, g: 0.0, b: 0.0, a: 1.0, }), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); // Correct for screen aspect ratio // (it may not be square!) let screen_aspect = self.size.width as f32 / self.size.height as f32; // TODO: warning when too many sprites are drawn. let mut instances: Vec = Vec::new(); for s in sprites { let mut pos: Point2 = (s.position.0 as f32, s.position.1 as f32).into(); // TODO: dynamic pos.x /= 400.0; pos.y /= 400.0; let texture = self.texture_array.get_texture(&s.name[..]); instances.push(Instance { transform: Transform { pos, aspect: texture.aspect / screen_aspect, scale: 0.25, rotate: s.angle, }, texture_index: texture.index, }) } // Enforce sprite limit if sprites.len() as u64 >= Self::SPRITE_LIMIT { // TODO: no panic, handle this better. panic!("Sprite limit exceeded!") } // Write new sprite data to buffer let instance_data: Vec<_> = instances.iter().map(Instance::to_raw).collect(); self.queue.write_buffer( &self.instance_buffer, 0, bytemuck::cast_slice(&instance_data), ); render_pass.set_pipeline(&self.render_pipeline); render_pass.set_bind_group(0, &self.texture_array.bind_group, &[]); render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..)); render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..)); render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..INDICES.len() as u32, 0, 0..instances.len() as _); // begin_render_pass borrows encoder mutably, so we can't call finish() // without dropping this variable. drop(render_pass); self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } }