// INCLUDE: global uniform header struct InstanceInput { @location(2) anchor: u32, @location(3) position: vec2, @location(4) angle: f32, @location(5) size: f32, @location(6) color_transform: vec4, @location(7) texture_index: vec2, @location(8) texture_fade: f32, @location(9) mask_index: vec2, }; struct VertexInput { @location(0) position: vec3, @location(1) texture_coords: vec2, } struct VertexOutput { @builtin(position) position: vec4, @location(0) texture_coords: vec2, @location(1) texture_index: u32, @location(2) mask_coords: vec2, @location(3) mask_index: vec2, @location(4) color_transform: vec4, } @group(0) @binding(0) var texture_array: binding_array>; @group(0) @binding(1) var sampler_array: binding_array; // INCLUDE: anchor.wgsl @vertex fn vertex_main( vertex: VertexInput, instance: InstanceInput, ) -> VertexOutput { let window_dim = global_data.window_size / global_data.window_scale.x; let scale = instance.size / window_dim.y; let aspect = ( global_atlas[instance.texture_index.x].width / global_atlas[instance.texture_index.x].height ); // Apply scale and sprite aspect // Note that our mesh starts centered at (0, 0). This is important! var pos: vec2 = vec2( vertex.position.x * scale * aspect, vertex.position.y * scale ); // Apply rotation (and adjust sprite angle, since sprites point north) pos = mat2x2( vec2(cos(instance.angle - 1.5708), sin(instance.angle - 1.5708)), vec2(-sin(instance.angle - 1.5708), cos(instance.angle - 1.5708)) ) * pos; // Correct for screen aspect, preserving height pos = vec2( pos.x / global_data.window_aspect.x, pos.y ); pos = pos + anchor( instance.anchor, instance.position, vec2(instance.size * aspect, instance.size) ); var out: VertexOutput; out.position = vec4(pos, 1.0, 1.0); out.color_transform = instance.color_transform; // TODO: function to get texture from sprite // Pick texture frame let t = global_atlas[instance.texture_index.x]; out.texture_index = u32(t.atlas_texture); out.texture_coords = vec2(t.xpos, t.ypos); if vertex.texture_coords.x == 1.0 { out.texture_coords = vec2(out.texture_coords.x + t.width, out.texture_coords.y); } if vertex.texture_coords.y == 1.0 { out.texture_coords = vec2(out.texture_coords.x, out.texture_coords.y + t.height); } // Pick mask image if mask is enabled // x coordinate of mask index is either 0 or 1, telling us whether or not to use a mask. // y coordinate is mask sprite index if instance.mask_index.x == 1u { let m = global_atlas[instance.mask_index.y]; out.mask_index = vec2(1u, u32(m.atlas_texture)); out.mask_coords = vec2(m.xpos, m.ypos); if vertex.texture_coords.x == 1.0 { out.mask_coords = vec2(out.mask_coords.x + m.width, out.mask_coords.y); } if vertex.texture_coords.y == 1.0 { out.mask_coords = vec2(out.mask_coords.x, out.mask_coords.y + m.height); } } else { out.mask_coords = vec2(0.0, 0.0); out.mask_index = vec2(0u, 0u); } return out; } @fragment fn fragment_main(in: VertexOutput) -> @location(0) vec4 { var mask: f32 = 1.0; if in.mask_index.x == 1u { mask = textureSampleLevel( texture_array[in.mask_index.y], sampler_array[0], in.mask_coords, 0.0 ).a; } var color: vec4 = textureSampleLevel( texture_array[in.texture_index], sampler_array[0], in.texture_coords, 0.0 ).rgba * in.color_transform; // Apply mask and discard fully transparent pixels color = vec4(color.rgb, color.a *mask); if color.a == 0.0 { discard; } return color; }