use anyhow::Result; use bytemuck; use cgmath::{Deg, EuclideanSpace, Matrix4, Point2, Vector2, Vector3}; use std::{iter, rc::Rc}; use wgpu; use winit::{self, dpi::PhysicalSize, window::Window}; use super::{ consts::{OPENGL_TO_WGPU_MATRIX, SPRITE_INSTANCE_LIMIT, STARFIELD_INSTANCE_LIMIT}, globaldata::{GlobalData, GlobalDataContent}, pipeline::PipelineBuilder, sprite::SubSprite, texturearray::TextureArray, vertexbuffer::{ consts::{SPRITE_INDICES, SPRITE_VERTICES}, types::{SpriteInstance, StarfieldInstance, TexturedVertex}, VertexBuffer, }, Sprite, }; use crate::{consts, game::Game}; pub struct GPUState { device: wgpu::Device, config: wgpu::SurfaceConfiguration, surface: wgpu::Surface, queue: wgpu::Queue, pub window: Window, pub window_size: winit::dpi::PhysicalSize, window_aspect: f32, sprite_pipeline: wgpu::RenderPipeline, starfield_pipeline: wgpu::RenderPipeline, starfield_count: u32, texture_array: TextureArray, global_data: GlobalData, vertex_buffers: VertexBuffers, } struct VertexBuffers { sprite: Rc, starfield: Rc, } impl GPUState { pub async fn new(window: Window) -> Result { let window_size = window.inner_size(); let window_aspect = window_size.width as f32 / window_size.height as f32; let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::all(), ..Default::default() }); let surface = unsafe { instance.create_surface(&window) }.unwrap(); // Basic setup let device; let queue; let config; { let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { features: wgpu::Features::TEXTURE_BINDING_ARRAY | wgpu::Features::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING, // We may need limits if we compile for wasm limits: wgpu::Limits::default(), label: Some("gpu device"), }, None, ) .await .unwrap(); // Assume sRGB let surface_caps = surface.get_capabilities(&adapter); let surface_format = surface_caps .formats .iter() .copied() .filter(|f| f.is_srgb()) .filter(|f| f.has_stencil_aspect()) .next() .unwrap_or(surface_caps.formats[0]); config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: window_size.width, height: window_size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], }; surface.configure(&device, &config); } let vertex_buffers = VertexBuffers { sprite: Rc::new(VertexBuffer::new::( "sprite", &device, Some(SPRITE_VERTICES), Some(SPRITE_INDICES), SPRITE_INSTANCE_LIMIT, )), starfield: Rc::new(VertexBuffer::new::( "starfield", &device, Some(SPRITE_VERTICES), Some(SPRITE_INDICES), STARFIELD_INSTANCE_LIMIT, )), }; // Load uniforms let global_data = GlobalData::new(&device); let texture_array = TextureArray::new(&device, &queue)?; // Make sure these match the indices in each shader let bind_group_layouts = &[ &texture_array.bind_group_layout, &global_data.bind_group_layout, ]; // Create render pipelines let sprite_pipeline = PipelineBuilder::new("sprite", &device) .set_shader(include_str!(concat!( env!("CARGO_MANIFEST_DIR"), "/src/render/shaders/", "sprite.wgsl" ))) .set_format(config.format) .set_triangle(true) .set_vertex_buffer(&vertex_buffers.sprite) .set_bind_group_layouts(bind_group_layouts) .build(); let starfield_pipeline = PipelineBuilder::new("starfield", &device) .set_shader(include_str!(concat!( env!("CARGO_MANIFEST_DIR"), "/src/render/shaders/", "starfield.wgsl" ))) .set_format(config.format) .set_triangle(true) .set_vertex_buffer(&vertex_buffers.starfield) .set_bind_group_layouts(bind_group_layouts) .build(); return Ok(Self { device, config, surface, queue, window, window_size, window_aspect, sprite_pipeline, starfield_pipeline, texture_array, global_data, vertex_buffers, starfield_count: 0, }); } pub fn window(&self) -> &Window { &self.window } pub fn resize(&mut self, game: &Game, new_size: PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.window_size = new_size; self.window_aspect = new_size.width as f32 / new_size.height as f32; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } self.update_starfield_buffer(game) } /// Create a SpriteInstance for s and add it to instances. /// Also handles child sprites. fn push_sprite( &self, game: &Game, instances: &mut Vec, clip_ne: Point2, clip_sw: Point2, s: Sprite, ) { // Position adjusted for parallax // TODO: adjust parallax for zoom? let pos: Point2 = { (Point2 { x: s.pos.x, y: s.pos.y, } - game.camera.pos.to_vec()) / s.pos.z }; let texture = self.texture_array.get_sprite_texture(s.texture); // Game dimensions of this sprite post-scale. // Don't divide by 2, we use this later. let height = s.size / s.pos.z; let width = height * texture.aspect; // Don't draw (or compute matrices for) // sprites that are off the screen if pos.x < clip_ne.x - width || pos.y > clip_ne.y + height || pos.x > clip_sw.x + width || pos.y < clip_sw.y - height { return; } // TODO: clean up let scale = height / game.camera.zoom; // Note that our mesh starts centered at (0, 0). // This is essential---we do not want scale and rotation // changing our sprite's position! // Apply sprite aspect ratio, preserving height. // This must be done *before* rotation. // // We apply the provided scale here as well as a minor optimization let sprite_aspect_and_scale = Matrix4::from_nonuniform_scale(texture.aspect * scale, scale, 1.0); // Apply rotation let rotate = Matrix4::from_angle_z(s.angle); // Apply screen aspect ratio, again preserving height. // This must be done AFTER rotation... think about it! let screen_aspect = Matrix4::from_nonuniform_scale(1.0 / self.window_aspect, 1.0, 1.0); // After finishing all ops, translate. // This must be done last, all other operations // require us to be at (0, 0). let translate = Matrix4::from_translation(Vector3 { x: pos.x / game.camera.zoom / self.window_aspect, y: pos.y / game.camera.zoom, z: 0.0, }); // Order matters! // The rightmost matrix is applied first. let t = OPENGL_TO_WGPU_MATRIX * translate * screen_aspect * rotate * sprite_aspect_and_scale; instances.push(SpriteInstance { transform: t.into(), texture_index: texture.index, }); // Add children if let Some(children) = s.children { for c in children { self.push_subsprite(game, instances, c, pos, s.angle); } } } /// Add a sprite's subsprite to instance. /// Only called by push_sprite. fn push_subsprite( &self, game: &Game, instances: &mut Vec, s: SubSprite, parent_pos: Point2, parent_angle: Deg, ) { let texture = self.texture_array.get_sprite_texture(s.texture); let scale = s.size / (s.pos.z * game.camera.zoom); let sprite_aspect_and_scale = Matrix4::from_nonuniform_scale(texture.aspect * scale, scale, 1.0); let rotate = Matrix4::from_angle_z(s.angle); let screen_aspect = Matrix4::from_nonuniform_scale(1.0 / self.window_aspect, 1.0, 1.0); let ptranslate = Matrix4::from_translation(Vector3 { x: parent_pos.x / game.camera.zoom / self.window_aspect, y: parent_pos.y / game.camera.zoom, z: 0.0, }); let protate = Matrix4::from_angle_z(parent_angle); let translate = Matrix4::from_translation(Vector3 { x: s.pos.x / game.camera.zoom / self.window_aspect, y: s.pos.y / game.camera.zoom, z: 0.0, }); // Order matters! // The rightmost matrix is applied first. let t = OPENGL_TO_WGPU_MATRIX * ptranslate * screen_aspect * protate * translate * rotate * sprite_aspect_and_scale; instances.push(SpriteInstance { transform: t.into(), texture_index: texture.index, }); } /// Make a SpriteInstance for each of the game's visible sprites. /// Will panic if SPRITE_INSTANCE_LIMIT is exceeded. /// /// This is only called inside self.render() fn make_sprite_instances(&self, game: &Game) -> Vec { let mut instances: Vec = Vec::new(); // Game coordinates (relative to camera) of ne and sw corners of screen. // Used to skip off-screen sprites. let clip_ne = Point2::from((-self.window_aspect, 1.0)) * game.camera.zoom; let clip_sw = Point2::from((self.window_aspect, -1.0)) * game.camera.zoom; for s in game.get_sprites() { self.push_sprite(game, &mut instances, clip_ne, clip_sw, s); } // Enforce sprite limit if instances.len() as u64 > SPRITE_INSTANCE_LIMIT { // TODO: no panic, handle this better. panic!("Sprite limit exceeded!") } return instances; } /// Make a StarfieldInstance for each star that needs to be drawn. /// Will panic if STARFIELD_INSTANCE_LIMIT is exceeded. /// /// Starfield data rarely changes, so this is called only when it's needed. pub fn update_starfield_buffer(&mut self, game: &Game) { let sz = consts::STARFIELD_SIZE as f32; // Compute window size in starfield tiles let mut nw_tile: Point2 = { // Game coordinates (relative to camera) of nw corner of screen. let clip_nw = Point2::from((self.window_aspect, 1.0)) * consts::ZOOM_MAX; // Parallax correction. // Also, adjust v for mod to work properly // (v is centered at 0) let v: Point2 = clip_nw * consts::STARFIELD_Z_MIN; let v_adj: Point2 = (v.x + (sz / 2.0), v.y + (sz / 2.0)).into(); #[rustfmt::skip] // Compute m = fmod(x, sz) let m: Vector2 = ( (v_adj.x - (v_adj.x / sz).floor() * sz) - (sz / 2.0), (v_adj.y - (v_adj.y / sz).floor() * sz) - (sz / 2.0) ).into(); // Now, remainder and convert to "relative tile" coordinates // ( where (0,0) is center tile, (0, 1) is north, etc) let rel = (v - m) / sz; // relative coordinates of north-east tile (rel.x.round() as i32, rel.y.round() as i32).into() }; // We need to cover the window with stars, // but we also need a one-wide buffer to account for motion. nw_tile += Vector2::from((1, 1)); // Truncate tile grid to buffer size // (The window won't be full of stars if our instance limit is too small) while ((nw_tile.x * 2 + 1) * (nw_tile.y * 2 + 1) * consts::STARFIELD_COUNT as i32) > STARFIELD_INSTANCE_LIMIT as i32 { nw_tile -= Vector2::from((1, 1)); } // Add all tiles to buffer let mut instances = Vec::new(); for x in (-nw_tile.x)..=nw_tile.x { for y in (-nw_tile.y)..=nw_tile.y { let offset = Vector3 { x: sz * x as f32, y: sz * y as f32, z: 0.0, }; for s in &game.system.starfield { instances.push(StarfieldInstance { position: (s.pos + offset).into(), size: s.size, tint: s.tint.into(), }) } } } // Enforce starfield limit if instances.len() as u64 > STARFIELD_INSTANCE_LIMIT { unreachable!("Starfield limit exceeded!") } self.starfield_count = instances.len() as u32; self.queue.write_buffer( &self.vertex_buffers.starfield.instances, 0, bytemuck::cast_slice(&instances), ); } pub fn render(&mut self, game: &Game) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("render encoder"), }); let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("render pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.0, g: 0.0, b: 0.0, a: 1.0, }), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); // Update global values self.queue.write_buffer( &self.global_data.buffer, 0, bytemuck::cast_slice(&[GlobalDataContent { camera_position: game.camera.pos.into(), camera_zoom: [game.camera.zoom, 0.0], camera_zoom_limits: [consts::ZOOM_MIN, consts::ZOOM_MAX], window_size: [ self.window_size.width as f32, self.window_size.height as f32, ], window_aspect: [self.window_aspect, 0.0], starfield_texture: [self.texture_array.get_starfield_texture().index, 0], starfield_tile_size: [consts::STARFIELD_SIZE as f32, 0.0], starfield_size_limits: [consts::STARFIELD_SIZE_MIN, consts::STARFIELD_SIZE_MAX], }]), ); // Create sprite instances let sprite_instances = self.make_sprite_instances(game); self.queue.write_buffer( &self.vertex_buffers.sprite.instances, 0, bytemuck::cast_slice(&sprite_instances), ); // These should match the indices in each shader, // and should each have a corresponding bind group layout. render_pass.set_bind_group(0, &self.texture_array.bind_group, &[]); render_pass.set_bind_group(1, &self.global_data.bind_group, &[]); // Starfield pipeline self.vertex_buffers.starfield.set_in_pass(&mut render_pass); render_pass.set_pipeline(&self.starfield_pipeline); render_pass.draw_indexed(0..SPRITE_INDICES.len() as u32, 0, 0..self.starfield_count); // Sprite pipeline self.vertex_buffers.sprite.set_in_pass(&mut render_pass); render_pass.set_pipeline(&self.sprite_pipeline); render_pass.draw_indexed( 0..SPRITE_INDICES.len() as u32, 0, 0..sprite_instances.len() as _, ); // begin_render_pass borrows encoder mutably, so we can't call finish() // without dropping this variable. drop(render_pass); self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } }