Chapter 4: full model
This commit is contained in:
@@ -3,7 +3,10 @@ use burn::{
|
||||
Tensor,
|
||||
backend::{Cuda, cuda::CudaDevice},
|
||||
module::{Module, Param, ParamId},
|
||||
nn::{Dropout, Embedding, EmbeddingConfig},
|
||||
nn::{
|
||||
Dropout, Embedding, EmbeddingConfig, LayerNorm, LayerNormConfig,
|
||||
transformer::{PositionWiseFeedForward, PositionWiseFeedForwardConfig},
|
||||
},
|
||||
prelude::Backend,
|
||||
tensor::{Bool, Distribution, Int, activation::softmax},
|
||||
};
|
||||
@@ -35,26 +38,54 @@ pub struct SampleDataArgs {
|
||||
skip: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Config {
|
||||
/// Number of tokens
|
||||
pub vocab_size: u32,
|
||||
|
||||
/// Maximum number of input tokens with positional embeddings
|
||||
pub context_size: usize,
|
||||
|
||||
/// Dimension of each token's embedding
|
||||
pub embed_dim: usize,
|
||||
|
||||
/// Number of attention heads
|
||||
pub n_heads: usize,
|
||||
|
||||
/// Dimension of each attn head
|
||||
pub head_dim: usize,
|
||||
|
||||
/// Number of transformer blocks
|
||||
pub n_layers: usize,
|
||||
|
||||
pub embed_drop_rate: f64,
|
||||
pub attention_drop_rate: f64,
|
||||
pub shortcut_drop_rate: f64,
|
||||
}
|
||||
|
||||
impl SampleDataArgs {
|
||||
pub fn run(self, _mp: Option<MultiProgress>) -> Result<()> {
|
||||
let device = CudaDevice::new(0);
|
||||
|
||||
let iter = DataReader::new(1, &self.data_dir).context("while initializing data reader")?;
|
||||
|
||||
let tokenizer = File::open(self.tokenizer).context("while opening tokenizer")?;
|
||||
let tokenizer = File::open(&self.tokenizer).context("while opening tokenizer")?;
|
||||
let tokenizer: Tokenizer =
|
||||
serde_json::from_reader(tokenizer).context("while loading tokenizer")?;
|
||||
|
||||
let context_size = 4;
|
||||
let stride = 4;
|
||||
let config = Config {
|
||||
vocab_size: tokenizer.vocab_size(),
|
||||
context_size: 4,
|
||||
embed_dim: 768,
|
||||
n_heads: 12,
|
||||
head_dim: 64, // = 768 / 12
|
||||
n_layers: 12,
|
||||
embed_drop_rate: 0.1,
|
||||
attention_drop_rate: 0.1,
|
||||
shortcut_drop_rate: 0.1,
|
||||
};
|
||||
|
||||
// Dimension of each token vector
|
||||
let embedding_dim = 3;
|
||||
// attention
|
||||
let head_dim = 2;
|
||||
let n_heads = 2;
|
||||
|
||||
let dropout = 0.5f64;
|
||||
let stride = config.context_size;
|
||||
|
||||
let batch_size = 10;
|
||||
let mut input_batch = Vec::with_capacity(batch_size);
|
||||
@@ -63,42 +94,64 @@ impl SampleDataArgs {
|
||||
#[expect(clippy::unwrap_used)] // Lazy error handling
|
||||
let iter = iter.map(|x| x.unwrap()).skip(self.skip).take(self.n);
|
||||
|
||||
// TODO: what is this?
|
||||
let tok_embedder = EmbeddingConfig::new(tokenizer.vocab_size() as usize, embedding_dim);
|
||||
let tok_embedder: Embedding<Cuda> = tok_embedder.init(&device);
|
||||
let model = GptModel::new(&config, &device);
|
||||
|
||||
// TODO: do we want to train this?
|
||||
let pos_embedder = EmbeddingConfig::new(context_size, embedding_dim);
|
||||
let pos_embedder: Embedding<Cuda> = pos_embedder.init(&device);
|
||||
// Text generation routine
|
||||
|
||||
let pos_tensor: Tensor<Cuda, 2, Int> =
|
||||
Tensor::arange(0..context_size as i64, &device).unsqueeze_dim(0);
|
||||
/*
|
||||
{
|
||||
let init = "Initial context. This is ";
|
||||
let tokens = tokenizer.encode(&init);
|
||||
|
||||
// [context_size, dim]
|
||||
let pos_embedding = pos_embedder.forward(pos_tensor).squeeze_dim::<2>(0);
|
||||
let n_tokens = tokens.len();
|
||||
let input: Array1<u32> = Array1::from_vec(tokens);
|
||||
let mut input: Tensor<Cuda, 1, Int> =
|
||||
Tensor::<_, 1, Int>::from_ints(input.as_slice().unwrap(), &device)
|
||||
.reshape([n_tokens]);
|
||||
|
||||
let attention: MultiheadAttention<Cuda> = MultiheadAttention::new(
|
||||
embedding_dim,
|
||||
head_dim,
|
||||
n_heads,
|
||||
context_size,
|
||||
dropout,
|
||||
&device,
|
||||
);
|
||||
for _ in 0..100 {
|
||||
let tokens: Vec<u32> = input.clone().to_data().convert::<u32>().into_vec().unwrap();
|
||||
println!("{:?}", tokens);
|
||||
println!("{}", tokenizer.decode(&tokens));
|
||||
|
||||
// Crop idx to context size;
|
||||
let batch = input
|
||||
.clone()
|
||||
.slice([0..config.context_size])
|
||||
.unsqueeze_dim(0);
|
||||
|
||||
// shape: [tokens, vocab_size]
|
||||
let logits = model.forward(batch).squeeze_dim::<2>(0);
|
||||
|
||||
// shape: [vocab_size]
|
||||
let logits = logits.slice([config.context_size - 1]).squeeze_dim::<1>(0);
|
||||
|
||||
let probs = softmax(logits, 0); // shape: [n_tokens]
|
||||
let id_next = probs.argmax(0); // shape: [1]
|
||||
|
||||
input = Tensor::cat(vec![input.slice([1..]), id_next], 0);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
for i in iter {
|
||||
let tokens = tokenizer.encode(&i);
|
||||
|
||||
for (a, b) in tokens
|
||||
.windows(context_size)
|
||||
.step_by(stride)
|
||||
.zip(tokens[stride..].windows(context_size).step_by(stride))
|
||||
{
|
||||
// Skip small texts.
|
||||
// TODO: do this better
|
||||
// TODO: non-uniform batches?
|
||||
if tokens.len() < config.context_size {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (a, b) in tokens.windows(config.context_size).step_by(stride).zip(
|
||||
tokens[stride..]
|
||||
.windows(config.context_size)
|
||||
.step_by(stride),
|
||||
) {
|
||||
input_batch.push(a.to_owned());
|
||||
output_batch.push(b.to_owned());
|
||||
|
||||
// TODO: non-uniform batches?
|
||||
|
||||
/*
|
||||
let context = a;
|
||||
let desired = &b[b.len() - 1..];
|
||||
@@ -109,12 +162,13 @@ impl SampleDataArgs {
|
||||
println!("{input:?} -> {target:?}");
|
||||
*/
|
||||
|
||||
// TODO: last batch
|
||||
if input_batch.len() >= batch_size {
|
||||
let shape = [batch_size, context_size];
|
||||
let shape = [input_batch.len(), config.context_size];
|
||||
|
||||
let input = std::mem::replace(&mut input_batch, Vec::with_capacity(batch_size));
|
||||
let input: Array2<u32> = Array2::from_shape_fn(shape, |(a, b)| input[a][b]);
|
||||
|
||||
#[expect(clippy::unwrap_used)]
|
||||
let input: Tensor<Cuda, 2, Int> =
|
||||
Tensor::<_, 1, Int>::from_ints(input.as_slice().unwrap(), &device)
|
||||
.reshape(shape);
|
||||
@@ -122,25 +176,44 @@ impl SampleDataArgs {
|
||||
let output =
|
||||
std::mem::replace(&mut output_batch, Vec::with_capacity(batch_size));
|
||||
let output: Array2<u32> = Array2::from_shape_fn(shape, |(a, b)| output[a][b]);
|
||||
|
||||
#[expect(clippy::unwrap_used)]
|
||||
let output: Tensor<Cuda, 2, Int> =
|
||||
Tensor::<_, 1, Int>::from_ints(output.as_slice().unwrap(), &device)
|
||||
.reshape(shape);
|
||||
|
||||
// Input token embeddings
|
||||
// dim: [batch, token, dim]
|
||||
let tok_e = tok_embedder.forward(input);
|
||||
let tok_e = tok_e.add(pos_embedding.clone().unsqueeze_dim(0));
|
||||
|
||||
// Attention
|
||||
|
||||
// shape: [batch, tokens, out_dim]
|
||||
let a = attention.forward(tok_e);
|
||||
self.batch(&config, input, &model);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !input_batch.is_empty() {
|
||||
let shape = [input_batch.len(), config.context_size];
|
||||
|
||||
let input = std::mem::replace(&mut input_batch, Vec::with_capacity(batch_size));
|
||||
let input: Array2<u32> = Array2::from_shape_fn(shape, |(a, b)| input[a][b]);
|
||||
|
||||
#[expect(clippy::unwrap_used)]
|
||||
let input: Tensor<Cuda, 2, Int> =
|
||||
Tensor::<_, 1, Int>::from_ints(input.as_slice().unwrap(), &device).reshape(shape);
|
||||
|
||||
let output = std::mem::replace(&mut output_batch, Vec::with_capacity(batch_size));
|
||||
let output: Array2<u32> = Array2::from_shape_fn(shape, |(a, b)| output[a][b]);
|
||||
|
||||
#[expect(clippy::unwrap_used)]
|
||||
let output: Tensor<Cuda, 2, Int> =
|
||||
Tensor::<_, 1, Int>::from_ints(output.as_slice().unwrap(), &device).reshape(shape);
|
||||
|
||||
self.batch(&config, input, &model);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn batch(&self, _cfg: &Config, input: Tensor<Cuda, 2, Int>, model: &GptModel<Cuda>) {
|
||||
let logits = model.forward(input);
|
||||
println!("{:?}", logits.shape());
|
||||
}
|
||||
}
|
||||
|
||||
/// Multihead attention.
|
||||
@@ -247,7 +320,7 @@ impl<B: Backend> MultiheadAttention<B> {
|
||||
|
||||
dropout: Dropout { prob: dropout },
|
||||
|
||||
utri_mask: Tensor::<B, 2, _>::tril_mask([context_length, context_length], 0, &device),
|
||||
utri_mask: Tensor::<B, 2, _>::tril_mask([context_length, context_length], 0, device),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -348,3 +421,125 @@ impl<B: Backend> MultiheadAttention<B> {
|
||||
return context_vec;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct GptModel<B: Backend> {
|
||||
embedder_tok: Embedding<B>,
|
||||
embedder_pos: Embedding<B>,
|
||||
embedder_drop: Dropout,
|
||||
|
||||
trf_blocks: Vec<TransformerBlock<B>>,
|
||||
final_norm: LayerNorm<B>,
|
||||
out_head: Param<Tensor<B, 2>>,
|
||||
}
|
||||
|
||||
impl<B: Backend> GptModel<B> {
|
||||
pub fn new(cfg: &Config, device: &B::Device) -> Self {
|
||||
let out_head_shape = [cfg.embed_dim, cfg.vocab_size as usize];
|
||||
|
||||
Self {
|
||||
embedder_tok: EmbeddingConfig::new(cfg.vocab_size as usize, cfg.embed_dim).init(device),
|
||||
|
||||
embedder_pos: EmbeddingConfig::new(cfg.context_size, cfg.embed_dim).init(device),
|
||||
|
||||
embedder_drop: Dropout {
|
||||
prob: cfg.embed_drop_rate,
|
||||
},
|
||||
|
||||
trf_blocks: (0..cfg.n_layers)
|
||||
.map(|_| TransformerBlock::new(cfg, device))
|
||||
.collect(),
|
||||
|
||||
final_norm: LayerNormConfig::new(cfg.embed_dim).init(device),
|
||||
|
||||
out_head: Param::uninitialized(
|
||||
ParamId::new(),
|
||||
move |device, is_require_grad| {
|
||||
Tensor::random(out_head_shape, Distribution::Default, device)
|
||||
.set_require_grad(is_require_grad)
|
||||
},
|
||||
device.clone(),
|
||||
true,
|
||||
out_head_shape.into(),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&self, input: Tensor<B, 2, Int>) -> Tensor<B, 3> {
|
||||
let n_tokens = input.shape()[1];
|
||||
|
||||
let embed_tok = self.embedder_tok.forward(input.clone());
|
||||
let embed_pos = self
|
||||
.embedder_tok
|
||||
.forward(Tensor::arange(0..n_tokens as i64, &input.device()).unsqueeze_dim(0));
|
||||
|
||||
let x = embed_tok + embed_pos;
|
||||
let x = self.embedder_drop.forward(x);
|
||||
let x = self.trf_blocks.iter().fold(x, |x, l| l.forward(x));
|
||||
let x = self.final_norm.forward(x);
|
||||
let logits = x.matmul(self.out_head.val().unsqueeze_dim(0));
|
||||
|
||||
return logits;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Module, Debug)]
|
||||
pub struct TransformerBlock<B: Backend> {
|
||||
attention: MultiheadAttention<B>,
|
||||
|
||||
/// TODO: wtf?
|
||||
ff: PositionWiseFeedForward<B>,
|
||||
|
||||
/// TODO: wtf?
|
||||
norm_a: LayerNorm<B>,
|
||||
norm_b: LayerNorm<B>,
|
||||
|
||||
drop_shortcut: Dropout,
|
||||
}
|
||||
|
||||
impl<B: Backend> TransformerBlock<B> {
|
||||
pub fn new(cfg: &Config, device: &B::Device) -> Self {
|
||||
Self {
|
||||
attention: MultiheadAttention::new(
|
||||
cfg.embed_dim,
|
||||
cfg.head_dim,
|
||||
cfg.n_heads,
|
||||
cfg.context_size,
|
||||
cfg.attention_drop_rate,
|
||||
device,
|
||||
),
|
||||
|
||||
ff: PositionWiseFeedForwardConfig::new(cfg.embed_dim, 4 * cfg.embed_dim)
|
||||
.with_dropout(0.0)
|
||||
.init(device),
|
||||
|
||||
norm_a: LayerNormConfig::new(cfg.embed_dim).init(device),
|
||||
norm_b: LayerNormConfig::new(cfg.embed_dim).init(device),
|
||||
|
||||
drop_shortcut: Dropout {
|
||||
prob: cfg.shortcut_drop_rate,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
|
||||
let input = {
|
||||
let shortcut = input.clone();
|
||||
let x = self.norm_a.forward(input);
|
||||
let x = self.attention.forward(x);
|
||||
let x = self.drop_shortcut.forward(x);
|
||||
x + shortcut
|
||||
};
|
||||
|
||||
let input = {
|
||||
// TODO: wtf?
|
||||
let shortcut = input.clone();
|
||||
let x = self.norm_b.forward(input);
|
||||
let x = self.ff.forward(x);
|
||||
let x = self.drop_shortcut.forward(x);
|
||||
x + shortcut
|
||||
};
|
||||
|
||||
return input;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user