from ast import Lambda import enum class ReductionType(enum.Enum): MACRO_EXPAND = enum.auto() MACRO_TO_FREE = enum.auto() FUNCTION_APPLY = enum.auto() class ReductionStatus: """ This object helps organize reduction output. An instance is returned after every reduction step. """ def __init__( self, *, output, was_reduced: bool, reduction_type: ReductionType | None = None ): # The new expression self.output = output # What did we do? # Will be None if was_reduced is false. self.reduction_type = reduction_type # Did this reduction change anything? # If we try to reduce an irreducible expression, # this will be false. self.was_reduced = was_reduced class LambdaToken: """ Base class for all lambda tokens. """ def bind_variables(self) -> None: pass def reduce(self, macro_table) -> ReductionStatus: return ReductionStatus( was_reduced = False, output = self ) class free_variable(LambdaToken): """ Represents a free variable. This object does not reduce to anything, since it has no meaning. Any name in an expression that isn't a macro or a bound variable is assumed to be a free variable. """ def __init__(self, label: str): self.label = label def __repr__(self): return f"" def __str__(self): return f"{self.label}" class command: @staticmethod def from_parse(result): return command( result[0], ) def __init__(self, name): self.name = name class macro(LambdaToken): """ Represents a "macro" in lambda calculus, a variable that reduces to an expression. These don't have any inherent logic, they just make writing and reading expressions easier. These are defined as follows: = """ @staticmethod def from_parse(result): return macro( result[0], ) def __init__(self, name): self.name = name def __repr__(self): return f"<{self.name}>" def __str__(self): return self.name def __eq__(self, other): if not isinstance(other, macro): raise TypeError("Can only compare macro with macro") return self.name == other.name def reduce(self, macro_table = {}, *, auto_free_vars = True) -> ReductionStatus: if self.name in macro_table: return ReductionStatus( output = macro_table[self.name], reduction_type = ReductionType.MACRO_EXPAND, was_reduced = True ) elif not auto_free_vars: raise NameError(f"Name {self.name} is not defined!") else: return ReductionStatus( output = free_variable(self.name), reduction_type = ReductionType.MACRO_TO_FREE, was_reduced = True ) class macro_expression: """ Represents a line that looks like = Doesn't do anything particularly interesting, just holds an expression until it is stored in the runner's macro table. """ @staticmethod def from_parse(result): return macro_expression( result[0].name, result[1] ) def __init__(self, label: str, exp: LambdaToken): self.label = label self.exp = exp def __repr__(self): return f"<{self.label} := {self.exp!r}>" def __str__(self): return f"{self.label} := {self.exp}" bound_variable_counter = 0 class bound_variable(LambdaToken): def __init__(self, forced_id = None): global bound_variable_counter if forced_id is None: self.identifier = bound_variable_counter bound_variable_counter += 1 else: self.identifier = forced_id def __eq__(self, other): if not isinstance(other, bound_variable): raise TypeError(f"Cannot compare bound_variable with {type(other)}") return self.identifier == other.identifier def __repr__(self): return f"" class lambda_func(LambdaToken): """ Represents a function. Defined like λa.aa After being created by the parser, a function needs to have its variables bound. This cannot happen during parsing, since the parser creates functions "inside-out," and we need all inner functions before we bind variables. """ @staticmethod def from_parse(result): return lambda_func( result[0], result[1] ) def __init__( self, input_var: macro | bound_variable, output: LambdaToken ): self.input: macro | bound_variable = input_var self.output: LambdaToken = output def __repr__(self) -> str: return f"<{self.input!r} → {self.output!r}>" def __str__(self) -> str: return f"λ{self.input}.{self.output}" def bind_variables( self, placeholder: macro | None = None, val: bound_variable | None = None, *, binding_self: bool = False ) -> None: """ Go through this function and all the functions inside it, and replace the strings generated by the parser with bound variables or free variables. If values are passed to `placeholder` and `val,` we're binding the variable of a function containing this one. If they are both none, start the binding chain with this function. If only one of those arguments is None, something is very wrong. `placeholder` is a macro, NOT A STRING! The parser assumes all names are macros at first, variable binding fixes those that are actually bound variables. If `binding_self` is True, don't throw an error on a name conflict and don't bind this function's input variable. This is used when we're calling this method to bind this function's variable. """ if (placeholder is None) and (val != placeholder): raise Exception( "Error while binding variables: placeholder and val are both None." ) # We only need to check for collisions if we're # binding another function's variable. If this # function starts the bind chain, skip that step. if not ((placeholder is None) and (val is None)): if not binding_self and isinstance(self.input, macro): if self.input == placeholder: raise NameError("Bound variable name conflict.") # If this function's variables haven't been bound yet, # bind them BEFORE binding the outer function's. # # If we bind inner functions' variables before outer # functions' variables, we won't be able to detect # name conflicts. if isinstance(self.input, macro) and not binding_self: new_bound_var = bound_variable() self.bind_variables( self.input, new_bound_var, binding_self = True ) self.input = new_bound_var # Bind variables inside this function. if isinstance(self.output, macro): if self.output == placeholder: self.output = val elif isinstance(self.output, lambda_func): self.output.bind_variables(placeholder, val) elif isinstance(self.output, lambda_apply): self.output.bind_variables(placeholder, val) def reduce(self, macro_table = {}) -> ReductionStatus: r = self.output.reduce(macro_table) # If a macro becomes a free variable, # reduce twice. if r.reduction_type == ReductionType.MACRO_TO_FREE: self.output = r.output return self.reduce(macro_table) return ReductionStatus( was_reduced = r.was_reduced, reduction_type = r.reduction_type, output = lambda_func( self.input, r.output ) ) def apply( self, val, *, bound_var: bound_variable | None = None ): """ Substitute `bound_var` into all instances of a bound variable `var`. If `bound_var` is none, use this functions bound variable. Returns a new object. """ calling_self = False if bound_var is None: calling_self = True bound_var = self.input new_out = self.output if isinstance(self.output, bound_variable): if self.output == bound_var: new_out = val elif isinstance(self.output, lambda_func): new_out = self.output.apply(val, bound_var = bound_var) elif isinstance(self.output, lambda_apply): new_out = self.output.sub_bound_var(val, bound_var = bound_var) # If we're applying THIS function, # just give the output if calling_self: return new_out # If we're applying another function, # return this one with substitutions else: return lambda_func( self.input, new_out ) class lambda_apply(LambdaToken): """ Represents a function application. Has two elements: fn, the function, and arg, the thing it acts upon. Parentheses are handled by the parser, and chained functions are handled by from_parse. """ @staticmethod def from_parse(result): if len(result) == 2: return lambda_apply( result[0], result[1] ) elif len(result) > 2: return lambda_apply.from_parse([ lambda_apply( result[0], result[1] )] + result[2:] ) def __init__( self, fn: LambdaToken, arg: LambdaToken ): self.fn: LambdaToken = fn self.arg: LambdaToken = arg def __repr__(self) -> str: return f"<{self.fn!r} | {self.arg!r}>" def __str__(self) -> str: return f"({self.fn} {self.arg})" def bind_variables( self, placeholder: macro | None = None, val: bound_variable | None = None ) -> None: """ Does exactly what lambda_func.bind_variables does, but acts on applications instead. There will be little documentation in this method, see lambda_func.bind_variables. """ if (placeholder is None) and (val != placeholder): raise Exception( "Error while binding variables: placeholder and val are both None." ) # If val and placeholder are None, # everything below should still work as expected. if isinstance(self.fn, macro) and placeholder is not None: if self.fn == placeholder: self.fn = val elif isinstance(self.fn, lambda_func): self.fn.bind_variables(placeholder, val) elif isinstance(self.fn, lambda_apply): self.fn.bind_variables(placeholder, val) if isinstance(self.arg, macro) and placeholder is not None: if self.arg == placeholder: self.arg = val elif isinstance(self.arg, lambda_func): self.arg.bind_variables(placeholder, val) elif isinstance(self.arg, lambda_apply): self.arg.bind_variables(placeholder, val) def sub_bound_var( self, val, *, bound_var: bound_variable ): new_fn = self.fn if isinstance(self.fn, bound_variable): if self.fn == bound_var: new_fn = val elif isinstance(self.fn, lambda_func): new_fn = self.fn.apply(val, bound_var = bound_var) elif isinstance(self.fn, lambda_apply): new_fn = self.fn.sub_bound_var(val, bound_var = bound_var) new_arg = self.arg if isinstance(self.arg, bound_variable): if self.arg == bound_var: new_arg = val elif isinstance(self.arg, lambda_func): new_arg = self.arg.apply(val, bound_var = bound_var) elif isinstance(self.arg, lambda_apply): new_arg = self.arg.sub_bound_var(val, bound_var = bound_var) return lambda_apply( new_fn, new_arg ) def reduce(self, macro_table = {}) -> ReductionStatus: # If we can directly apply self.fn, do so. if isinstance(self.fn, lambda_func): return ReductionStatus( was_reduced = True, reduction_type = ReductionType.FUNCTION_APPLY, output = self.fn.apply(self.arg) ) # Otherwise, try to reduce self.fn. # If that is impossible, try to reduce self.arg. else: r = self.fn.reduce(macro_table) # If a macro becomes a free variable, # reduce twice. if r.reduction_type == ReductionType.MACRO_TO_FREE: self.fn = r.output return self.reduce(macro_table) if r.was_reduced: return ReductionStatus( was_reduced = True, reduction_type = r.reduction_type, output = lambda_apply( r.output, self.arg ) ) else: r = self.arg.reduce(macro_table) if r.reduction_type == ReductionType.MACRO_TO_FREE: self.arg = r.output return self.reduce(macro_table) return ReductionStatus( was_reduced = r.was_reduced, reduction_type = r.reduction_type, output = lambda_apply( self.fn, r.output ) )