2023-05-04 11:24:40 -07:00

103 lines
2.6 KiB
TeX

\section{Logarithms}
\definition{}<logdef>
The \textit{logarithm} is the inverse of the exponent. That is, if $b^p = c$, then $\log_b{c} = p$. \\
In other words, $\log_b{c}$ asks the question ``what power do I need to raise $b$ to to get $c$?'' \\
\medskip
In both $b^p$ and $\log_b{c}$, the number $b$ is called the \textit{base}.
\problem{}
Evaluate the following by hand:
\begin{enumerate}
\item $\log_{10}{(1000)}$
\vfill
\item $\log_2{(64)}$
\vfill
\item $\log_2{(\frac{1}{4})}$
\vfill
\item $\log_x{(x)}$ for any $x$
\vfill
\item $log_x{(1)}$ for any $x$
\vfill
\end{enumerate}
\pagebreak
\definition{}
There are a few ways to write logarithms:
\begin{itemize}
\item[] $\log{x} = \log_{10}{x}$
\item[] $\lg{x} = \log_{10}{x}$
\item[] $\ln{x} = \log_e{x}$
\end{itemize}
\definition{}
The \textit{domain} of a function is the set of values it can take as inputs. \\
The \textit{range} of a function is the set of values it can produce.
\medskip
For example, the domain and range of $f(x) = x$ is $\mathbb{R}$, all real numbers. \\
The domain of $f(x) = |x|$ is $\mathbb{R}$, and its range is $\mathbb{R}^+ \cup \{0\}$, all positive real numbers and 0. \\
\medskip
Note that the domain and range of a function are not always equal.
\problem{}<expdomain>
What is the domain of $f(x) = 5^x$? \\
What is the range of $f(x) = 5^x$?
\vfill
\problem{}<logdomain>
What is the domain of $f(x) = \log{x}$? \\
What is the range of $f(x) = \log{x}$?
\vfill
\pagebreak
\problem{}<logids>
Prove the following identities: \\
\begin{enumerate}[itemsep=2mm]
\item $\log_b{(b^x)} = x$
\item $b^{\log_b{x}} = x$
\item $\log_b{(xy)} = \log_b{(x)} + \log_b{(y)}$
\item $\log_b{(\frac{x}{y})} = \log_b{(x)} - \log_b{(y)}$
\item $\log_b{(x^y)} = y \log_b{(x)}$
\end{enumerate}
\vfill
\begin{instructornote}
A good intro to the following sections is the linear slide rule:
\begin{center}
\begin{tikzpicture}[scale=1]
\linearscale{2}{1}{}
\linearscale{0}{0}{}
\slideruleind
{5}
{1}
{2 + 3 = 5}
\end{tikzpicture}
\end{center}
Take two linear rulers, offset one, and you add. \\
If you do the same with a log scale, you multiply! \\
\vspace{1ex}
Note that the slide rules above start at 0.
\linehack{}
After assembling the paper slide rule, you can make a visor with some transparent tape. Wrap a strip around the slide rule, sticky side out, and stick it to itself to form a ring. Cover the sticky side with another layer of tape, and trim the edges to make them straight. Use the edge of the visor to read your slide rule!
\end{instructornote}
\pagebreak