158 lines
3.2 KiB
TeX

\section{Counting Graphs}
\definition{}
A graph is \textit{bipartite} if its nodes can be split into two groups, where no two nodes in the same group share an edge. One such graph is shown below.
\problem{}
Draw a bipartite graph with 5 vertices.
\vfill
\problem{}
Is the following graph bipartite? \par
\hint{Be careful.}
\begin{center}
\begin{tikzpicture}
% Nodes
\begin{scope}
\node[main] (A) at (0mm, 0mm) {$A$};
\node[main] (B) at (0mm, -10mm) {$B$};
\node[main] (C) at (0mm, -20mm) {$C$};
\node[main] (D) at (20mm, 0mm) {$D$};
\node[main] (E) at (20mm, -10mm) {$E$};
\node[main] (F) at (20mm, -20mm) {$F$};
\end{scope}
% Edges
\draw
(A) edge (D)
(A) edge (E)
(B) edge (F)
(C) edge (E)
(C) edge (D)
(E) edge (F)
;
\end{tikzpicture}
\end{center}
\vfill
\definition{}
A \textit{subgraph} is a graph inside another graph. \par
In the next problem, the left graph contains the left graph. \par
The triangle is a subgraph of the larger graph.
\problem{}
Find two subgraphs of the triangle in the larger graph.
\begin{center}
\adjustbox{valign=c}{
\begin{tikzpicture}
% Nodes
\begin{scope}
\node[main] (1) {1};
\node[main] (2) [right of=1] {2};
\node[main] (3) [below of=1] {3};
\end{scope}
% Edges
\draw
(1) edge (2)
(2) edge (3)
(3) edge (1)
;
\end{tikzpicture}
}
\hspace{20mm}
\adjustbox{valign=c}{
\begin{tikzpicture}
% Nodes
\begin{scope}
\node[main] (1) {1};
\node[main] (4) [below of=1] {4};
\node[main] (3) [left of=4] {3};
\node[main] (5) [right of=4] {5};
\node[main] (6) [right of=5] {6};
\node[main] (2) [above of=6] {2};
\node[main] (7) [below of=4] {7};
\end{scope}
% Edges
\draw
(1) edge (4)
(2) edge (5)
(2) edge (6)
(3) edge (4)
(4) edge (5)
(4) edge (7)
(5) edge (6)
(3) edge (7)
;
\end{tikzpicture}
}
\end{center}
\vfill
\pagebreak
A few special graphs have names. Here are a few you should know before we begin:
\definition{The path graph}
The \textit{path graph} on $n$ vertices (written $P_n$) is a straight line of vertices connected by edges. \par
$P_5$ is shown below.
\begin{center}
\begin{tikzpicture}
\node[main] (1) {1};
\node[main] (2) [right of=1] {2};
\node[main] (3) [right of=2] {3};
\node[main] (4) [right of=3] {4};
\node[main] (5) [right of=4] {5};
\draw[-] (1) -- (2);
\draw[-] (2) -- (3);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\end{tikzpicture}
\end{center}
\definition{The complete graph}
The \textit{complete graph} on $n$ vertices (written $K_n$) is the graph that has $n$ nodes, all of which share an edge.
$K_4$ is shown below.
\begin{center}
\begin{tikzpicture}
\node[main] (1) {A};
\node[main] (2) [above right of=1] {B};
\node[main] (3) [below right of=1] {C};
\node[main] (4) [above right of=3] {D};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (1) -- (4);
\draw[-] (2) -- (3);
\draw[-] (2) -- (4);
\draw[-] (3) -- (4);
\end{tikzpicture}
\end{center}
\problem{}
\begin{enumerate}
\item How many times does $P_4$ appear in $K_9$?
\item How many times does $C_4$ appear in $K_9$?
\item How many times does $K_{4,4}$ appear in $K_9$?
\item How many times does $C_5$ appear in $K_8$?
\item How many times does $K_{3,3}$ appear in $K_{12}$?
\item How many times does $K_{3,3}$ appear in $K_{6,6}$?
\end{enumerate}