Mark 46d44f41de
All checks were successful
CI / Typst formatting (pull_request) Successful in 6s
CI / Typos (pull_request) Successful in 13s
CI / Build (pull_request) Successful in 8m28s
Tom edits
2025-02-13 13:06:50 -08:00

208 lines
4.6 KiB
Typst

#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= Floats
#definition()
_Binary decimals_#footnote([Note that "binary decimal" is a misnomer---"deci" means "ten"!]) are very similar to base-10 decimals.\
In base 10, we interpret place value as follows:
- $0.1 = 10^(-1)$
- $0.03 = 3 times 10^(-2)$
- $0.0208 = 2 times 10^(-2) + 8 times 10^(-4)$
#v(5mm)
We can do the same in base 2:
- $#text([`0.1`]) = 2^(-1) = 0.5$
- $#text([`0.011`]) = 2^(-2) + 2^(-3) = 0.375$
- $#text([`101.01`]) = 5.125$
#v(5mm)
#problem()
Rewrite the following binary decimals in base 10: \
#note([You may leave your answer as a fraction.])
- `1011.101`
- `110.1101`
#v(1fr)
#pagebreak()
#definition()
Another way we can interpret a bit string is as a _signed floating-point decimal_, or a `float` for short. \
Floats represent a subset of the real numbers, and are interpreted as follows: \
#note([The following only applies to floats that consist of 32 bits. We won't encounter any others today.])
#align(
center,
box(
inset: 2mm,
cetz.canvas({
import cetz.draw: *
let chars = (
`0`,
`b`,
`0`,
`_`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`_`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`_`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`_`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
`0`,
)
let x = 0
for c in chars {
content((x, 0), c)
x += 0.25
}
let y = -0.4
line((0.3, y), (0.65, y))
content((0.45, y - 0.2), [s])
line((0.85, y), (2.9, y))
content((1.9, y - 0.2), [exponent])
line((3.10, y), (9.4, y))
content((6.3, y - 0.2), [fraction])
}),
),
)
- The first bit denotes the sign of the float's value
We'll label it $s$. \
If $s = #text([`1`])$, this float is negative; if $s = #text([`0`])$, it is positive.
- The next eight bits represent the _exponent_ of this float.
#note([(we'll see what that means soon)]) \
We'll call the value of this eight-bit binary integer $E$. \
Naturally, $0 <= E <= 255$ #note([(since $E$ consist of eight bits)])
- The remaining 23 bits represent the _fraction_ of this float. \
They are interpreted as the fractional part of a binary decimal. \
For example, the bits `0b10100000_00000000_00000000` represent $0.5 + 0.125 = 0.625$. \
We'll call the value of these bits as a binary integer $F$. \
Their value as a binary decimal is then $F div 2^23$. #note([(convince yourself of this)])
#problem(label: "floata")
Consider `0b01000001_10101000_00000000_00000000`. \
Find the $s$, $E$, and $F$ we get if we interpret this bit string as a `float`. \
#note([Leave $F$ as a sum of powers of two.])
#solution([
$s = 0$ \
$E = 258$ \
$F = 2^31+2^19 = 2,621,440$
])
#v(1fr)
#definition(label: "floatdef")
The final value of a float with sign $s$, exponent $E$, and fraction $F$ is
$
(-1)^s times 2^(E - 127) times (1 + F / (2^(23)))
$
Notice that this is very similar to base-10 scientific notation, which is written as
$
(-1)^s times 10^(e) times (f)
$
#note[
We subtract 127 from $E$ so we can represent positive and negative numbers. \
$E$ is an eight bit binary integer, so $0 <= E <= 255$ and thus $-127 <= (E - 127) <= 127$.
]
#problem()
Consider `0b01000001_10101000_00000000_00000000`. \
This is the same bit string we used in @floata. \
#v(2mm)
What value do we get if we interpret this bit string as a float? \
#hint([$21 div 16 = 1.3125$])
#solution([
This is 21:
$
2^(131) times (1 + (2^(21) + 2^(19)) / (2^(23)))
= 2^(4) times (1 + 0.25 + 0.0625)
= 16 times (1.3125)
= 21
$
])
#v(1fr)
#pagebreak()
#problem()
Encode $12.5$ as a float. \
#hint([$12.5 div 8 = 1.5625$])
#solution([
$
12.5
= 8 times 1.5625
= 2^(3) times (1 + (0.5 + 0.0625))
= 2^(130) times (1 + (2^(22) + 2^(19)) / (2^(23)))
$
which is `0b01000001_01001000_00000000_00000000`. \
])
#v(1fr)
#definition()
Say we have a bit string $x$. \
We'll let $x_f$ denote the value we get if we interpret $x$ as a float, \
and we'll let $x_i$ denote the value we get if we interpret $x$ an integer.
#problem()
Let $x = #text[`0b01000001_01001000_00000000_00000000`]$. \
What are $x_f$ and $x_i$? #note([As always, you may leave big numbers as powers of two.])
#solution([
$x_f = 12.5$
#v(2mm)
$x_i = 2^30 + 2^24 + 2^22 + 2^19 = 11,095,237,632$
])
#v(1fr)