2024-10-24 09:33:50 -07:00

92 lines
2.5 KiB
TeX
Executable File

\section{Modular Arithmetic}
\definition{}
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
\vspace{2mm}
Multiplication in $\mathbb{Z}_n$ works much like multiplication in $\mathbb{Z}$: \par
If $a, b$ are elements of $\mathbb{Z}_n$, $a \times b$ is the remainder of $a \times b$ when divided by $n$. \par
\note{For example, $2 \times 2 = 4$ and $3 \times 4 = 12 = 2$ in $\mathbb{Z}_5$}
\problem{}
Create a multiplication table for $\mathbb{Z}_4$:
\begin{center}
\begin{tabular}{c | c c c c}
$\times$ & 0 & 1 & 2 & 3 \\
\hline
0 & ? & ? & ? & ? \\
1 & ? & ? & ? & ? \\
2 & ? & ? & ? & ? \\
3 & ? & ? & ? & ? \\
\end{tabular}
\end{center}
\definition{}
Let $a, b$ be elements of %\mathbb{Z}_n$. \par
If $a \times b = 1$, we say that $b$ is the \textit{inverse} of $a$ in $\mathbb{Z}_n$.
\vspace{2mm}
We usually write \say{$a$ inverse} as $a^{-1}$. \par
Inverses are \textbf{not} guaranteed to exist.
\theorem{}<mod_has_inverse>
$a$ has an inverse in $\mathbb{Z}_n$ if and only if $\gcd(a, n) = 1$ \par
\problem{}
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
\begin{solution}
\begin{itemize}
\item $3^{-1}$ in $\mathbb{Z}_{4}$ is $3$
\item $20^{-1}$ in $\mathbb{Z}_{14}$ doesn't exist.
\item $4^{-1}$ in $\mathbb{Z}_{7}$ is $2$
\end{itemize}
\end{solution}
\vfill
\problem{}
Show that if $n$ is prime, every element of $\mathbb{Z}_n$ (except 0) has an inverse.
\vfill
\problem{}
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
\vfill
\pagebreak
\problem{}<general_inverse>
In general, how can we find the inverse of $a$ in $\mathbb{Z}_n$? Assume $a$ and $n$ are coprime.\par
\hint{You can find that $34^{-1}$ is $-175$ in $\mathbb{Z}_{541}$ by looking at a previous problem.}
\begin{solution}
We need an $a^{-1}$ so that $a \times a^{-1} = 1$. \par
This means that $aa^{-1} - mk = 1$. \par
Since $a$ and $m$ are coprime, $\gcd(a, m) = 1$ and $aa^{-1} - mk = \gcd(a, m)$ \par
Now use the extended Euclidean algorithm from \ref{extendedeuclid} to find $a^\star$.
\end{solution}
\vfill
\definition{}
Elements in $\mathbb{Z}_n$ that have an inverse are called \textit{units}. \par
The set of units in $\mathbb{Z}_n$ is called $\mathbb{Z}_n^\times$, which is read \say{$\mathbb{Z}$ mod $n$ cross}.
\problem{}
What is $\mathbb{Z}_5^\times$? \par
What is $\mathbb{Z}_{12}^\times$? \par
\vfill
\pagebreak