2023-12-09 18:17:22 -08:00

147 lines
3.8 KiB
TeX
Executable File

\section{The Euclidean Algorithm}
\definition{}
The \textit{greatest common divisor} of $a$ and $b$ is the greatest integer that divides both $a$ and $b$. \par
We denote this number with $\gcd(a, b)$. For example, $\gcd(45, 60) = 15$.
\problem{}
Find $\gcd(20, 14)$ by hand.
\begin{solution}
$\gcd(20, 14) = 2$
\end{solution}
\vfill
\theorem{The Division Algorithm}<divalgo>
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
\begin{instructornote}
\ref{divalgo} looks scary on paper, but it's quite simple. \par
Doing a small example on the board (like $14 \div 3$) may be a good idea. \par
\vspace{2mm}
For those that are new to modular arithmetic, you may want to explain how remainders,
clock-face counting, division algorithm, and modular arithmetic are all the same.
\end{instructornote}
\theorem{}<gcd_abc>
For any integers $a, b, c$, \par
$\gcd(ac + b, a) = \gcd(a, b)$
\problem{The Euclidean Algorithm}<euclid>
Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par
Then, compute $\gcd(1610, 207)$ by hand. \par
\begin{solution}
Using \ref{gcd_abc} and the division algorithm,
% Minipage prevents column breaks inside body
\begin{multicols}{2}
\begin{minipage}{\columnwidth}
$\gcd(1610, 207)$ \par
$= \gcd(207, 161)$ \par
$= \gcd(161, 46)$ \par
$= \gcd(46, 23)$ \par
$= \gcd(23, 0) = 23$ \par
\end{minipage}
\columnbreak
\begin{minipage}{\columnwidth}
$1610 = 207 \times 7 + 161$ \par
$207 = 161 \times 1 + 46$ \par
$161 = 46 \times 3 + 23$ \par
$46 = 23 \times 2 + 0$ \par
\end{minipage}
\end{multicols}
\end{solution}
\vfill
\pagebreak
\problem{}<extendedeuclid>
Using the output of the Euclidean algorithm,
\begin{itemize}
\item[-] find a pair $(u, v)$ that satisfies $20u + 14v = \gcd(20, 14)$
\item[-] find a pair $(u, v)$ that satisfies $541u + 34v = \gcd(541, 34)$
% gcd = 1
% u = 11; v = -175
\end{itemize}
This is called the \textit{extended Euclidean algorithm}. \par
\hint{
You don't need to fully solve the last part of this question. \\
Understand how you \textit{would} do it, then move on.
Don't spend too much time on arithmetic.
}
%For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\
%For every such $c$, what are $u$ and $v$?
\vspace{2mm}
\textbf{Hint:}
After running the Euclidean algorithm, you have a table similar to the one shown below. \par
You can use a bit of algebra to rearrange these statements to get what you need. \par
\vspace{5mm}
\newdimen\mywidth
\setbox0=\hbox{Using the Euclidean Algorithm to find that $\gcd(20, 14) = 2$:}
\mywidth=\wd0
\begin{minipage}{\mywidth}
\begin{center}
Using the Euclidean Algorithm to find that $\gcd(20, 14) = 2$: \par
$20 = 14 \times 1 + 6$ \par
$14 = 6 \times 2 + 2$ \par
$6 = 2 \times 3 + 0$ \par
\end{center}
\end{minipage}\par
\vspace{2mm}
We now want to write the 2 in the last equation in terms of 20 and 14.
\begin{solution}
Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example:
\begin{multicols}{2}
\begin{minipage}{\columnwidth}
\textit{Euclidean Algorithm:} \par
$20 = 14 \times 1 + 6$ \par
$14 = 6 \times 2 + 2$ \par
$6 = 2 \times 3 + 0$ \par
\end{minipage}
\columnbreak
\begin{minipage}{\columnwidth}
\textit{Rearranged:} \par
$6 = 20 - 14 \times 1$ \par
$2 = 14 - 6 \times 2 = \gcd(20, 14)$ \par
\end{minipage}
\end{multicols}
Using the right table, we can replace $6$ in $2 = 14 - 6 \times 2$ to get
$2 = 14 - (20 - 14) \times 2$, \par
which gives us $2 = \gcd(20, 14) = (3)14 + (-2)20$. \par
\linehack{}
$\gcd(20, 14) = 20(-2) + 14(3)$ \par
$\gcd(541, 34) = 541(11) + 34(-175)$
\end{solution}
\vfill
\pagebreak