56 lines
1.2 KiB
TeX
Executable File
56 lines
1.2 KiB
TeX
Executable File
% use [nosolutions] flag to hide solutions.
|
|
% use [solutions] flag to show solutions.
|
|
\documentclass[
|
|
solutions,
|
|
singlenumbering
|
|
]{../../resources/ormc_handout}
|
|
\usepackage{../../resources/macros}
|
|
|
|
|
|
|
|
\uptitlel{Advanced 1}
|
|
\uptitler{\smallurl{}}
|
|
\title{The Size of Sets}
|
|
\subtitle{Prepared by Mark on \today{}}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\input{parts/0 sets.tex}
|
|
\input{parts/1 really big.tex}
|
|
\input{parts/2 cartesian.tex}
|
|
\input{parts/3 functions.tex}
|
|
\input{parts/4 enumeration.tex}
|
|
%\input{parts/5 dense.tex}
|
|
\input{parts/6 uncountable.tex}
|
|
|
|
|
|
%\vfill
|
|
%\pagebreak
|
|
|
|
%\section{Bonus Problems}
|
|
|
|
%\problem{}
|
|
%Using only sets, how can we build an ordered pair $(a, b)$? \par
|
|
%$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
|
|
%Of course, $(a, b) \neq (b, a)$.
|
|
|
|
%\begin{solution}
|
|
% $(a, b) = \{ \{a\}, \{a, b\}\}$
|
|
%\end{solution}
|
|
|
|
%\problem{}
|
|
%Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
|
%Provide a proof or a counterexample.
|
|
|
|
%\vfill
|
|
|
|
%\problem{}
|
|
%Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
|
|
%Provide a proof or a counterexample.
|
|
|
|
%\vfill
|
|
%\pagebreak
|
|
|
|
\end{document} |