2024-04-01 07:21:08 -07:00

141 lines
3.8 KiB
TeX
Executable File

\section{Error Detection}
An ISBN\footnote{International Standard Book Number} is a unique numeric book identifier. It comes in two forms: ISBN-10 and ISBN-13. Naturally, ISBN-10s have ten digits, and ISBN-13s have thirteen. The final digit in both versions is a \textit{check digit}.
\vspace{3mm}
Say we have a sequence of nine digits, forming a partial ISBN-10: $n_1 n_2 ... n_9$. \par
The final digit, $n_{10}$, is chosen from $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ so that:
$$
\sum_{i = 1}^{10} (11 - i)n_i \equiv 0 \text{ mod } 11
$$
If $n_{10}$ is equal to 10, it is written as \texttt{X}.
\problem{}
Only one of the following ISBNs is valid. Which one is it?
\begin{itemize}
\item \texttt{0-134-54896-2}
\item \texttt{0-895-77258-2}
\end{itemize}
\begin{solution}
The first has an inconsistent check digit.
\end{solution}
\vfill
\pagebreak
\problem{}
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \par
Provide a proof.
\begin{solution}
Let $S$ be the sum $10n_1 + 9n_2 + ... + 2n_9 + n_{10}$, before any digits are changed.
\vspace{3mm}
If you change one digit of the ISBN, $S$ changes by $km$, where $k \in \{1,2,...,10\}$ and $|m| \leq 10$. \par
$k$ and $m$ cannot be divisible by 11, thus $km$ cannot be divisible by 11.
\vspace{3mm}
We know that $S \equiv 0 \text{ (mod 11)}$. \par
After the change, the checksum is $S + km \equiv km \not\equiv 0 \text{ (mod 11)}$.
\end{solution}
\vfill
\problem{}
Take a valid ISBN-10 and swap two adjacent digits. When will the result be a valid ISBN-10? \par
This is called a \textit{transposition error}.
\begin{solution}
Let $n_1n_2...n_{10}$ be a valid ISBN-10. \par
When we swap $n_i$ and $n_{i+1}$, we subtract $n_i$ and add $n_{i+1}$ to the checksum.
\vspace{3mm}
If the new ISBN is to be valid, we must have that $n_{i+1} - n_i \equiv 0 \text{ (mod 11)}$. \par
This is impossible unless $n_i = n_{i+1}$. Figure out why yourself.
\end{solution}
\vfill
\pagebreak
\problem{}
ISBN-13 error checking is slightly different. Given a partial ISBN-13 $n_1 n_2 n_3 ... n_{12}$, the final digit is given by
$$
n_{13} = \Biggr[ \sum_{i=1}^{12} n_i \times (2 + (-1)^i) \Biggl] \text{ mod } 10
$$
What is the last digit of the following ISBN-13? \par
\texttt{978-0-380-97726-?}
\begin{solution}
The final digit is 0.
\end{solution}
\vfill
\problem{}
Take a valid ISBN-13 and change one digit. Is it possible that you get another valid ISBN-13? \par
If you can, provide an example; if you can't, provide a proof.
\begin{solution}
Let $n_1n_2...n_{13}$ be a valid ISBN-13. Choose some $n_i$ and change it to $m_i$. \par
\vspace{3mm}
Since $n_i$, $m_i$ $\in \{0, 1, 2, ..., 9\}$, $-9 \leq n_i - m_i \leq 9$. \par
\vspace{2mm}
Case 0: $i$ is 13 \par
This is trivial.
\vspace{2mm}
Case 1: $i$ is odd \par
For the new ISBN to be valid, we need $n_i - m_i \equiv 0 \text{ (mod 10)}$. \par
This cannot happen if $n_i \neq m_i$.
\vspace{2mm}
Case 2: $i$ is even \par
For the new ISBN to be valid, we need $3(n_i - m_i) \equiv 0 \text{ (mod 10)}$ \par
This cannot happen, 10 and 3 are coprime.
\end{solution}
\vfill
\problem{}
Take a valid ISBN-13 and swap two adjacent digits. When will the result be a valid ISBN-13? \par
\hint{The answer here is more interesting than it was last time.}
\begin{solution}
Say we swap $n_i$ and $n_{i+1}$, where $i \in \{1, 2, ..., 11\}$. \par
The checksum changes by $2(n_{i+1} - n_i)$, and will \par
remain the same if this value is $\equiv 0 \text{ (mod 10)}$.
\end{solution}
\vfill
\problem{}<isbn-nocorrect>
\texttt{978-0-08-2066-46-6} was a valid ISBN until I changed a single digit. \par
Can you find the digit I changed? Can you recover the original ISBN?
\begin{solution}
Nope, unless you look at the meaning of each digit in the spec. \par
If you're unlucky, maybe not even then.
\end{solution}
\vfill
\pagebreak