2025-01-16 16:49:45 -08:00

108 lines
2.7 KiB
TeX
Executable File

\section{Introduction}
\definition{}
Say we have a sequence $a_0, a_1, a_2, ...$. \par
The \textit{generating function} of this sequence is defined as follows:
\begin{equation*}
A(x) = \sum_{n=0}^\infty a_nx^n = a_0 + a_1x + a_2x^2 + a_3x^3 + ...
\end{equation*}
Under some circumstances, this sum does not converge, and thus $A(x)$ is undefined. \par
However, we can still manipulate this infinite sum to get useful results even if $A(x)$
diverges.
\problem{}
Let $A(x)$ be the generating function of the sequence $a_n$, \par
and let $B(x)$ be the generating function of the sequence $b_n$. \par
Find the sequences that correspond to the following generating functions:
\begin{itemize}[itemsep=2mm]
\item $cA(x)$
\item $xA(x)$
\item $A(x) + B(x)$
\item $A(x)B(x)$
\end{itemize}
\begin{solution}
\begin{itemize}[itemsep=2mm]
\item $cA(x)$ corresponds to $ca_n$
\item $xA(x)$ corresponds to $0, a_0, a_1, ...$
\item $A(x) + B(x)$ corresponds to $a_n+b_n$
\item $A(x)B(x)$ is $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + ...$ \par
Which corresponds to $c_n = \sum_{k=0}^n a_kb_{n-k}$
\end{itemize}
\end{solution}
\vfill
\pagebreak
\problem{}<xminusone>
Assuming $|x| < 1$, show that
\begin{equation*}
\frac{1}{1-x} = 1 + x + x^2 + x^3 + ...
\end{equation*}
\hint{use some clever algebra. What is $x \times (1 + x + x^2 + ...)$? }
\begin{solution}
Let $S = 1 + x + x^2 + ...$ \par
Then, $xS = x + x^2 + x^3 + ...$ \par
\vspace{2mm}
So, $xS = S - 1$ \par
and $1 = S - xS = S(1 - x)$ \par
and $S = \frac{1}{1-x}$.
\end{solution}
\vfill
\problem{}
Let $A(x)$ be the generating function of the sequence $a_n$. \par
Find the sequence that corresponds to the generating function $\frac{A(x)}{1-x}$
\begin{solution}
\begin{align*}
\frac{A(x)}{1-x}
&=~ A(x)(1 + x + x^2 + ...) \\
&=~ (a_0 + a_1x + a_2x^2 + ...)(1 + x + x^2 + ...)\\
&=~ a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + ...
\end{align*}
Which corresponds to the sequence $c_n = \sum_{k=0}^n a_k$
\end{solution}
\vfill
\problem{}
Find short expressions for the generating functions for the following sequences:
\begin{itemize}
\item $1, 0, 1, 0, ...$
\item $1, 2, 4, 8, 16, ...$
\item $1, 2, 3, 4, 5, ...$
\end{itemize}
\begin{solution}
\begin{itemize}[itemsep=2mm]
\item $1, 0, 1, 0, ...$ corresponds to $1 + x^2 + x^4 + ...$. \par
By \ref{xminusone}, this is $\frac{1}{1-x^2}$.
\item $1, 2, 4, 8, 16, ...$ corresponds to $1 + 2x + (2x)^2 + ...$. \par
By \ref{xminusone}, this is $\frac{1}{1-2x}$.
\item $1, 2, 3, 4, 5, ...$ corresponds to $1 + 2x + 3x^2 + 4x^3 + ...$.\par
This is equal to $(1 + x + x^2 + ...)^2$, and thus is $\left(\frac{1}{1-x}\right)^2$
\end{itemize}
\end{solution}
\vfill
\pagebreak