2024-09-25 09:16:20 -07:00

67 lines
1.5 KiB
TeX

\section{Introduction}
\generic{Setup:}
Suppose we toss a 6-sided die $n$ times. \par
It is easy to detect the first time we roll a 6. \par
What should we do if we want to detect the \textit{last}?
\problem{}<lastl>
Given $l \leq n$, what is the probability that the last $l$
tosses of this die contain exactly one six? \par
\hint{Start with small $l$.}
\begin{solution}
$\mathcal{P}(\text{last } l \text{ tosses have exactly one 6}) = (\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$
\end{solution}
\vfill
\problem{}
For what value of $l$ is the probability in \ref{lastl} maximal? \par
The following table may help.
\begin{center}
\begin{tabular}{|| c | c | c ||}
\hline
\rule{0pt}{3.5mm} % Bonus height for exponent
$l$ & $(\nicefrac{5}{6})^l$ & $(\nicefrac{1}{6})(\nicefrac{5}{6})^l$ \\
\hline\hline
1 & 0.83 & 0.133 \\
\hline
2 & 0.69 & 0.115 \\
\hline
3 & 0.57 & 0.095 \\
\hline
4 & 0.48 & 0.089 \\
\hline
5 & 0.40 & 0.067 \\
\hline
6 & 0.33 & 0.055 \\
\hline
7 & 0.27 & 0.045 \\
\hline
8 & 0.23 & 0.038 \\
\hline
\end{tabular}
\end{center}
\begin{solution}
$(\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$ is maximal at $x = 5.48$, so $l = 5$. \par
$l = 6$ is close enough.
\end{solution}
\vfill
\problem{}
Finish your solution: \par
In $n$ rolls of a six-sided die, what strategy maximizes
our chance of detecting the last $6$ that is rolled? \par
What is the probability of our guess being right?
\begin{solution}
Whether $l = 5$, $5.4$, or $6$, the probability of success rounds to $0.40$.
\end{solution}
\vfill
\pagebreak