2023-04-03 11:09:02 -07:00

136 lines
3.3 KiB
TeX

\section{The Curious Kestrel}
\definition{}
Recall that a bird is \textit{egocentric} if it is fond of itself. \\
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
\definition{}
More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\
Convince yourself that a hopelessly egocentric bird is fixated on itself.
\problem{}
Say $A$ is fixated on $B$. Is $A$ fond of $B$?
\begin{solution}
Yes! See the following proof.
\begin{alltt}
\lineno{} let A
\lineno{} let B so that Ax = B
\lineno{} \thus{} AB = B \qed{}
\end{alltt}
\end{solution}
\vfill
\definition{}
The \textit{Kestrel} $K$ is defined by the following relationship:
$$
(Kx)y = x~~~\forall x, y
$$
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
\problem{}
Show that an egocentric Kestrel is hopelessly egocentric.
\begin{solution}
\begin{alltt}
\lineno{} KK = K
\lineno{} \thus{} (KK)y = K \cmnt{By definition of the Kestrel}
\lineno{} \thus{} Ky = K \qed{} \cmnt{By 01}
\end{alltt}
\end{solution}
\vfill
\pagebreak
\problem{}
Assume the forest contains a Kestrel. \\
Given the Law of Composition and the Law of the Mockingbird, show that at least one bird is hopelessly egocentric.
\begin{helpbox}[0.75]
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
\texttt{???:} You'll need one more result from the previous section. Good luck!
\end{helpbox}
\begin{solution}
The final piece is a lemma we proved earlier: \\
Any bird is fond of at least one bird
\begin{alltt}
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
\lineno{} \thus{} Ay = A \qed{} \cmnt{By 01}
\end{alltt}
\end{solution}
\vfill
\problem{Kestrel Left-Cancellation}<leftcancel>
In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\
Show that $Kx = Ky \implies x = y$.
\begin{alltt}
\cmnt{This is a hint.}
let x, y so that Kx = Ky
\end{alltt}
\begin{solution}
\begin{alltt}
\lineno{} let x, y so that Kx = Ky
\lineno{} let z
\lineno{}
\lineno{} (Kx)z = (Ky)z \cmnt{By 01}
\lineno{}
\lineno{} \cmnt{By the definition of K}
\lineno{} (Kx)z = x
\lineno{} (Ky)z = y
\lineno{}
\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{}
\end{alltt}
\end{solution}
\vfill
\pagebreak
\problem{}
Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
\begin{solution}
\begin{alltt}
\lineno{} let x so that K(Kx) = Kx
\lineno{} (K(Kx))y = (Kx)y
\lineno{} = Kx \cmnt{By definition of K}
\lineno{} x = Kx \cmnt{By 03 and definition of K}
\end{alltt}
\end{solution}
\vfill
\problem{}
An egocentric Kestrel must be extremely lonely. Why is this?
\begin{solution}
If a Kestrel is egocentric, it must be the only bird in the forest!
\begin{alltt}
\lineno{} \cmnt{Given}
\lineno{} Kx = K for some x
\lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric}
\lineno{} Kx = K for all x
\lineno{}
\lineno{} let x, y
\lineno{} Kx = K
\lineno{} Ky = K
\lineno{} Kx = Ky
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
\lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists}
\end{alltt}
\end{solution}
\vfill
\pagebreak