\section{The Euclidean Algorithm} \definition{} The \textit{greatest common divisor} of $a$ and $b$ is the greatest integer that divides both $a$ and $b$. \par We denote this number with $\gcd(a, b)$. For example, $\gcd(45, 60) = 15$. \problem{} Find $\gcd(20, 14)$ by hand. \begin{solution} $\gcd(20, 14) = 2$ \end{solution} \vfill \theorem{The Division Algorithm} Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par In other words, we can divide $a$ by $b$ to get $q$ remainder $r$. \theorem{} For any integers $a, b, c$, \par $\gcd(ac + b, a) = \gcd(a, b)$ \problem{The Euclidean Algorithm} Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par Then, compute $\gcd(1610, 207)$ by hand. \par \begin{solution} Using \ref{gcd_abc} and the division algorithm, % Minipage prevents column breaks inside body \begin{multicols}{2} \begin{minipage}{\columnwidth} $\gcd(1610, 207)$ \par $= \gcd(207, 161)$ \par $= \gcd(161, 46)$ \par $= \gcd(46, 23)$ \par $= \gcd(23, 0) = 23$ \par \end{minipage} \columnbreak \begin{minipage}{\columnwidth} $1610 = 207 \times 7 + 161$ \par $207 = 161 \times 1 + 46$ \par $161 = 46 \times 3 + 23$ \par $46 = 23 \times 2 + 0$ \par \end{minipage} \end{multicols} \end{solution} \vfill \pagebreak \problem{} Using the output of the Euclidean algorithm, \begin{itemize} \item[-] find a pair $(u, v)$ that satisfies $20u + 14v = \gcd(20, 14)$ \item[-] find a pair $(u, v)$ that satisfies $541u + 34v = \gcd(541, 34)$ % gcd = 1 % u = 11; v = -175 \end{itemize} This is called the \textit{extended Euclidean algorithm}. \par \hint{ You don't need to fully solve the last part of this question. \\ Understand how you \textit{would} do it, then move on. Don't spend too much time on arithmetic. } %For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\ %For every such $c$, what are $u$ and $v$? \vspace{2mm} \textbf{Hint:} After running the Euclidean algorithm, you have a table similar to the one shown below. \par You can use a bit of algebra to rearrange these statements to get what you need. \par \vspace{5mm} \newdimen\mywidth \setbox0=\hbox{Using the Euclidean Algorithm to find that $\gcd(20, 14) = 2$:} \mywidth=\wd0 \begin{minipage}{\mywidth} \begin{center} Using the Euclidean Algorithm to find that $\gcd(20, 14) = 2$: \par $20 = 14 \times 1 + 6$ \par $14 = 6 \times 2 + 2$ \par $6 = 2 \times 3 + 0$ \par \end{center} \end{minipage}\par \vspace{2mm} We now want to write the 2 in the last equation in terms of 20 and 14. \begin{solution} Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example: \begin{multicols}{2} \begin{minipage}{\columnwidth} \textit{Euclidean Algorithm:} \par $20 = 14 \times 1 + 6$ \par $14 = 6 \times 2 + 2$ \par $6 = 2 \times 3 + 0$ \par \end{minipage} \columnbreak \begin{minipage}{\columnwidth} \textit{Rearranged:} \par $6 = 20 - 14 \times 1$ \par $2 = 14 - 6 \times 2 = \gcd(20, 14)$ \par \end{minipage} \end{multicols} Using the right table, we can replace $6$ in $2 = 14 - 6 \times 2$ to get $2 = 14 - (20 - 14) \times 2$, \par which gives us $2 = \gcd(20, 14) = (3)14 + (-2)20$. \par \linehack{} $\gcd(20, 14) = 20(-2) + 14(3)$ \par $\gcd(541, 34) = 541(11) + 34(-175)$ \end{solution} \begin{solution} \huge This problem is too hard. Break it into many. \end{solution} \vfill \pagebreak