\section{Multiplication} We'll use the C and D scales of your slide rule to multiply. \par Say we want to multiply $2 \times 3$. First, move the \textit{left-hand index} of the C scale over the smaller number, $2$: \def\sliderulewidth{10} \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(2)}{1}{C} \cdscale{0}{0}{D} \end{tikzpicture} \end{center} Then we'll find the second number, $3$ on the C scale, and read the D scale under it: \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(2)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(6)} {1} {6} \end{tikzpicture} \end{center} Of course, our answer is 6. \problem{} What is $1.15 \times 2.1$? \par Use your slide rule. \begin{solution} \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(1.15)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(1.15)} {1} {1.15} \slideruleind {\cdscalefn(1.15) + \cdscalefn(2.1)} {1} {2.415} \end{tikzpicture} \end{center} \end{solution} \vfill Note that your answer isn't exact. $1.15 \times 2.1 = 2.415$, but an answer accurate within two decimal places is close enough for most practical applications. \pagebreak Look at your C and D scales again. They contain every number between 1 and 10, but no more than that. What should we do if we want to calculate $32 \times 210$? \par \problem{} Using your slide rule, calculate $32 \times 210$. \begin{solution} \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(2.1)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(2.1)} {1} {2.1} \slideruleind {\cdscalefn(2.1) + \cdscalefn(3.2)} {1} {6.72} \end{tikzpicture} \end{center} Placing the decimal point correctly is your job. \par $10^1 \times 10^2 = 10^3$, so our final answer is $6.72 \times 10^3 = 672$. \end{solution} \vfill \problem{} Compute the following: \begin{enumerate} \item $1.44 \times 52$ \item $0.38 \times 1.24$ \item $\pi \times 2.35$ \end{enumerate} \begin{solution} \begin{enumerate} \item $1.44 \times 52 = 74.88$ \item $0.38 \times 1.24 = 0.4712$ \item $\pi \times 2.35 = 7.382$ \end{enumerate} \end{solution} \vfill \problem{} Note that the numbers on your C and D scales are logarithmically spaced. \def\sliderulewidth{13} \begin{center} \begin{tikzpicture}[scale=1] \cdscale{0}{1}{C} \cdscale{0}{0}{D} \end{tikzpicture} \end{center} Why does our multiplication procedure work? \vfill \pagebreak Now we want to compute $7.2 \times 5.5$: \def\sliderulewidth{10} \begin{center} \begin{tikzpicture}[scale=0.8] \cdscale{\cdscalefn(5.5)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(5.5)} {1} {5.5} \slideruleind {\cdscalefn(5.5) + \cdscalefn(7.2)} {1} {???} \end{tikzpicture} \end{center} No matter what order we go in, the answer ends up off the scale. There must be another way. \vspace{2mm} Look at the far right of your C scale. There's an arrow pointing to the $10$ tick, labeled \textit{right-hand index}. Move it over the \textit{larger} number, $7.2$: \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(7.2)} {1} {7.2} \end{tikzpicture} \end{center} Now find the smaller number, $5.5$, on the C scale, and read the D scale under it: \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(7.2)} {1} {7.2} \slideruleind {\cdscalefn(3.96)} {1} {3.96} \end{tikzpicture} \end{center} Our answer should be about $7 \times 5 = 35$, so let's move the decimal point: $5.5 \times 7.2 = 39.6$. We can do this by hand to verify our answer. \vspace{2mm} \problem{} Why does this work? \begin{solution} Consider the following picture, where we have two D scales next to each other: \begin{center} \begin{tikzpicture}[scale=0.7] \cdscale{\cdscalefn(7.2) - \cdscalefn(10)}{1}{C} \cdscale{0}{0}{} \cdscale{-10}{0}{} \draw[ draw=black, ] (0, 0) -- (0, -0.3) node [below] {D}; \draw[ draw=black, ] (-10, 0) -- (-10, -0.3) node [below] {D}; \slideruleind {-10 + \cdscalefn(7.2)} {1} {7.2} \slideruleind {\cdscalefn(7.2)} {1} {7.2} \slideruleind {\cdscalefn(3.96)} {1} {3.96} \end{tikzpicture} \end{center} \vspace{2mm} The second D scale has been moved to the right by $(\log{10})$, so every value on it is $(\log{10})$ smaller than it should be. \vspace{2mm} \vspace{2mm} In other words, the answer we get from reverse multiplication is $\log{a} + \log{b} - \log{10}$. \par This reduces to $\log{(\frac{a \times b}{10})}$, and explains the misplaced decimal point in $7.2 \times 5.5$. \end{solution} \vfill \pagebreak \problem{} Compute the following using your slide rule: \begin{enumerate} \item $9 \times 8$ \item $15 \times 35$ \item $42.1 \times 7.65$ \end{enumerate} \begin{solution} \begin{enumerate} \item $9 \times 8 = 72$ \item $15 \times 35 = 525$ \item $42.1 \times 7.65 = 322.065$ \end{enumerate} \end{solution} \vfill \pagebreak