% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, nowarning, %singlenumbering ]{../../resources/ormc_handout} %\usepackage{lua-visual-debug} \usepackage{tikz-3dplot} \begin{document} \maketitle {Linear Algebra 101} { Prepared by Mark on \today \\ } \section{Notation and Terminology} \definition{} \begin{itemize} \item $\mathbb{R}$ is the set of all real numbers. \item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive. \item $\mathbb{R}^+_0$ is the set of positive real numbers and zero \end{itemize} Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above. \definition{} Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\ For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\ \vspace{4mm} You can think of this as placing the two sets \say{perpendicular} to one another. In the image below, each dot corresponds to an element of $A \times B$: \begin{center} \begin{tikzpicture}[ scale=1, bullet/.style={circle,inner sep=1.5pt,fill} ] \draw[->] (-0.2,0) -- (4,0) node[right]{$A$}; \draw[->] (0,-0.2) -- (0,3) node[above]{$B$}; \draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$}; \draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$}; \draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$}; \draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$}; \draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$}; \node[bullet] at (1, 1){}; \node[bullet] at (2, 1) {}; \node[bullet] at (3, 1) {}; \node[bullet] at (1, 2) {}; \node[bullet] at (2, 2) {}; \node[bullet] at (3, 2) {}; \end{tikzpicture} \end{center} \problem{} Let $A = \{0, 1\} \times \{0, 1\}$. \\ Let $B = \{ a, b\}$ \\ What is $A \times B$? \vfill \problem{} What is $\mathbb{R} \times \mathbb{R}$? \\ \hint{Use the \say{perpendicular} analogy} \vfill \pagebreak \definition{} $\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\ In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\ \vspace{4mm} Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}} Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\ $\mathbb{R}^1$ and $\mathbb{R}$ are identical. \vspace{4mm} Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\ $\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try. \problem{} Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\ What is $\mathbb{R}^2 \times \mathbb{R}$? \vfill \section{Vectors} \definition{} Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\ As you already know, we have a few operations on vectors: \begin{itemize} \item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$ \item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$. \end{itemize} \problem{} Compute the following, or explain why you can't: \begin{itemize} \item $[1, 2, 3] + [1, 3, 4]$ \item $4 \times [5, 2, 4]$ \item $a + b$, where $a \in \mathbb{R} ^5$ and $b \in \mathbb{R}^7$ \end{itemize} \vfill \pagebreak \definition{} We can also define the \textit{dot product} of two vectors. \\ The dot product maps a pair of elements from $\mathbb{R}^n$ to $\mathbb{R}$: $$ a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n $$ \problem{} % pictures % addition, scalar multiplication % dot product % transformations % linearity % matrices % norms \end{document}