\section{Counting Graphs} \definition{} A graph is \textit{bipartite} if its nodes can be split into two groups, where no two nodes in the same group share an edge. One such graph is shown below. \problem{} Draw a bipartite graph with 5 vertices. \vfill \problem{} Is the following graph bipartite? \par \hint{Be careful.} \begin{center} \begin{tikzpicture} % Nodes \begin{scope} \node[main] (A) at (0mm, 0mm) {$A$}; \node[main] (B) at (0mm, -10mm) {$B$}; \node[main] (C) at (0mm, -20mm) {$C$}; \node[main] (D) at (20mm, 0mm) {$D$}; \node[main] (E) at (20mm, -10mm) {$E$}; \node[main] (F) at (20mm, -20mm) {$F$}; \end{scope} % Edges \draw (A) edge (D) (A) edge (E) (B) edge (F) (C) edge (E) (C) edge (D) (E) edge (F) ; \end{tikzpicture} \end{center} \vfill \definition{} A \textit{subgraph} is a graph inside another graph. \par In the next problem, the left graph contains the left graph. \par The triangle is a subgraph of the larger graph. \problem{} Find two subgraphs of the triangle in the larger graph. \begin{center} \adjustbox{valign=c}{ \begin{tikzpicture} % Nodes \begin{scope} \node[main] (1) {1}; \node[main] (2) [right of=1] {2}; \node[main] (3) [below of=1] {3}; \end{scope} % Edges \draw (1) edge (2) (2) edge (3) (3) edge (1) ; \end{tikzpicture} } \hspace{20mm} \adjustbox{valign=c}{ \begin{tikzpicture} % Nodes \begin{scope} \node[main] (1) {1}; \node[main] (4) [below of=1] {4}; \node[main] (3) [left of=4] {3}; \node[main] (5) [right of=4] {5}; \node[main] (6) [right of=5] {6}; \node[main] (2) [above of=6] {2}; \node[main] (7) [below of=4] {7}; \end{scope} % Edges \draw (1) edge (4) (2) edge (5) (2) edge (6) (3) edge (4) (4) edge (5) (4) edge (7) (5) edge (6) (3) edge (7) ; \end{tikzpicture} } \end{center} \vfill \pagebreak A few special graphs have names. Here are a few you should know before we begin: \definition{The path graph} The \textit{path graph} on $n$ vertices (written $P_n$) is a straight line of vertices connected by edges. \par $P_5$ is shown below. \begin{center} \begin{tikzpicture} \node[main] (1) {1}; \node[main] (2) [right of=1] {2}; \node[main] (3) [right of=2] {3}; \node[main] (4) [right of=3] {4}; \node[main] (5) [right of=4] {5}; \draw[-] (1) -- (2); \draw[-] (2) -- (3); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \end{tikzpicture} \end{center} \definition{The complete graph} The \textit{complete graph} on $n$ vertices (written $K_n$) is the graph that has $n$ nodes, all of which share an edge. $K_4$ is shown below. \begin{center} \begin{tikzpicture} \node[main] (1) {A}; \node[main] (2) [above right of=1] {B}; \node[main] (3) [below right of=1] {C}; \node[main] (4) [above right of=3] {D}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (1) -- (4); \draw[-] (2) -- (3); \draw[-] (2) -- (4); \draw[-] (3) -- (4); \end{tikzpicture} \end{center} \problem{} \begin{enumerate} \item How many times does $P_4$ appear in $K_9$? \item How many times does $C_4$ appear in $K_9$? \item How many times does $K_{4,4}$ appear in $K_9$? \item How many times does $C_5$ appear in $K_8$? \item How many times does $K_{3,3}$ appear in $K_{12}$? \item How many times does $K_{3,3}$ appear in $K_{6,6}$? \end{enumerate}