\section{Logical Algebra} \definition{} Odds are, you are familiar with \textit{logical symbols}. \par In this handout, we'll use the following: \begin{itemize} \item $\lnot$: not \item $\land$: and \item $\lor$: or \item $\rightarrow$: implies \item $()$, parenthesis. \end{itemize} The function of these is defined by \textit{truth tables}: \begin{center} \begin{tabular}{ c | c | c } \multicolumn{3}{ c }{and} \\ \hline $A$ & $B$ & $A \land B$ \\ \hline F & F & F \\ F & T & F \\ T & F & F \\ T & T & T \end{tabular} \hfill \begin{tabular}{ c | c | c } \multicolumn{3}{ c }{or} \\ \hline $A$ & $B$ & $A \lor B$ \\ \hline F & F & F \\ F & T & T \\ T & F & T \\ T & T & T \end{tabular} \hfill \begin{tabular}{ c | c | c } \multicolumn{3}{ c }{implies} \\ \hline $A$ & $B$ & $A \rightarrow B$ \\ \hline F & F & T \\ F & T & T \\ T & F & F \\ T & T & T \end{tabular} \hfill \begin{tabular}{ c | c } \multicolumn{2}{ c }{not} \\ \hline $A$ & $\lnot A$ \\ \hline T & F \\ F & T \\ ~ & ~ \\ ~ & ~ \\ \end{tabular} \end{center} \vspace{2mm} $A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is true when $A$ or $B$ (or both) are true. \par $\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par \vspace{2mm} $A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par The only time $\rightarrow$ is false is when $T \rightarrow F$. Think about it: why does this make sense? \par \problem{} Evaluate the following. \begin{itemize} \item $(T \land F) \lor T$ \item $(\lnot (F \lor \lnot T) ) \rightarrow T$ \item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$ \end{itemize} \vfill \pagebreak \problem{} Evaluate the following. \begin{itemize} \item $A \rightarrow T$ for any $A$ \item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A, B$ \item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$ \end{itemize} \vfill \problem{} Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par That is, show that these give the same result for the same $A$ and $B$. \hint{Use a truth table} \vfill \problem{} Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$? \begin{solution} $((\lnot A) \rightarrow B)$ \end{solution} \vfill Note that both $\land$ and $\lor$ can be defined using the other logical symbols. \par The only logical symbols we \textit{need} are $\lnot$, $\rightarrow$, and $()$. \par We include $\land$ and $\lor$ to simplify our logical expressions. \pagebreak