#import "@local/handout:0.1.0": * #show: handout.with( title: [Symmetric Groups], by: "Mark", ) #include "parts/00 intro.typ" #pagebreak() #include "parts/01 cycle.typ" #pagebreak() #include "parts/02 groups.typ" #pagebreak() #include "parts/03 subgroup.typ" #pagebreak() = Bonus problems #problem() Show that $x in ZZ^+$ has a multiplicative inverse mod $n$ if and only if $gcd(x, n) = 1$ #v(1fr) #problem() Let $sigma = (sigma_1 sigma_2 ... sigma_k)$ be a $k$-cycle in $S_n$, and let $tau$ be an arbitrary element of $S_n$. \ Show that $tau sigma tau^(-1)$ = $(tau(sigma_1), tau(sigma_2), ..., tau(sigma_k))$ \ #hint[$tau$ is a permutation, so $tau(x)$ is the value at position $x$ after applying $tau$.] #v(1fr) #problem() Show that the set ${ (1, 2), (1,2,...,n)}$ generates $S_n$. #v(1fr)