\section{Cycle Notation} \definition{Order} The \textit{order} of a permutation $f$ is the smallest $n$ so that $f^n(x) = x$ for all $x$. \par In other words, if we repeat this permutation $n$ times, we get back to where we started. \vspace{2mm} For example, consider $[2134]$. This permutation has order $2$, as we clearly see below: \begin{center} \begin{tikzpicture}[scale=0.5] \node (1a) at (0, 0.5) {1}; \node (2a) at (1, 0.5) {2}; \node (3a) at (2, 0.5) {3}; \node (4a) at (3, 0.5) {4}; \node (2b) at (0, -2) {2}; \node (1b) at (1, -2) {1}; \node (3b) at (2, -2) {3}; \node (4b) at (3, -2) {4}; \node (1c) at (0, -4.5) {1}; \node (2c) at (1, -4.5) {2}; \node (3c) at (2, -4.5) {3}; \node (4c) at (3, -4.5) {4}; \line{1a}{1b} \line{2a}{2b} \line{3a}{3b} \line{4a}{4b} \line{1b}{1c} \line{2b}{2c} \line{3b}{3c} \line{4b}{4c} \end{tikzpicture} \end{center} Of course, swapping the first two elements of a list twice changes nothing. \par Thus, $[2134]$ is its own inverse, and has an order of two. \par Naturally, the identity permutation has order one. \problem{} What is the order of $[2314]$? \par How about $[4321]$? \par \note[Note]{You shouldn't need to draw any braids to solve this problem.} \vfill \problem{Bonus} Show that all permutations (on a finite set) have a well-defined order. \par In other words, show that there is always an integer $n$ so that $f^n(x) = x$. \vfill \definition{Composition} The \textit{composition} of two permutations $f$ and $g$ is the permutation $h(x) = f(g(x))$. \par The usual notation for this is $f \circ g$, but we'll simply write $fg$. \problem{} What is $[1324][4321]$? \par How about $[321][213][231]$? \par \hint{composition is left-associative, so we evaluate $abc$ as $(ab)c$} \vfill \pagebreak As you may have noticed, the square-bracket notation we've been using thus far is a bit unwieldy. Permutations are verbs---but we've been referring to them using a noun (namely, their output when applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the underlying object. \vspace{2mm} Think about it: is the permutation $[1234]$ different than the permutation $[12345]$? \par Indeed, these permutations operate on different sets---but they are both the identity! \par What should we do if we want to talk about the identity on $\{1, 2, ..., 10\}$? \vspace{2mm} We need something better. \definition{Cycles} Any permutation is composed of a number of \textit{cycles}. \par For example, consider the permutation $[2134]$, which consists of one two-cycle: $1 \to 2 \to 1$ \par \note[Note]{$3 \to 3$ and $4 \to 4$ are also cycles, but we'll ignore them. One-cycles aren't aren't interesting.} \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \draw[line width = 0.3mm, ->, ocyan] (1) -- ($(1) + (0,-1)$) -- ($(2) + (0,-1)$) -- (2); \draw[line width = 0.3mm, ->, ocyan] (2) -- ($(2) + (0, 1)$) -- ($(1) + (0, 1)$) -- (1); \end{tikzpicture} \end{center} The permutation $[431265]$ is a bit more interesting---it contains of two cycles: \par ($1 \to 3 \to 2 \to 4 \to 1$ and $5 \to 6 \to 5$) \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \node (5) at (4, 0) {5}; \node (6) at (5, 0) {6}; \draw[line width = 0.3mm, ->, ocyan] (3) -- ($(3) + (0,-1)$) -- ($(2) + (0,-1)$) -- (2); \draw[line width = 0.3mm, ->, ocyan] (2) -- ($(2) + (0,1.5)$) -- ($(4) + (0,1.5)$) -- (4); \draw[line width = 0.3mm, ->, ocyan] (4) -- ($(4) + (0,-1.5)$) -- ($(1) + (0,-1.5)$) -- (1); \draw[line width = 0.3mm, ->, ocyan] (1) -- ($(1) + (0,1)$) -- ($(3) + (0,1)$) -- (3); \draw[line width = 0.3mm, ->, ogreen] (5) -- ($(5) + (0,-1)$) -- ($(6) + (0,-1)$) -- (6); \draw[line width = 0.3mm, ->, ogreen] (6) -- ($(6) + (0,1)$) -- ($(5) + (0,1)$) -- (5); \end{tikzpicture} \end{center} \problem{} Find all cycles in $[5342761]$. \begin{solution} \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \node (5) at (4, 0) {5}; \node (6) at (5, 0) {6}; \node (7) at (6, 0) {7}; \draw[line width = 0.3mm, ->, ocyan] (1) -- ($(1) + (0,2)$) -- ($(7) + (0,2)$) -- (7); \draw[line width = 0.3mm, ->, ocyan] (7) -- ($(7) + (0,-1.5)$) -- ($(5) + (0,-1.5)$) -- (5); \draw[line width = 0.3mm, ->, ocyan] (5) -- ($(5) + (0,1.5)$) -- ($(1) + (0.5,1.5)$) -- ($(1) + (0.5,-1)$) -- ($(1) + (0,-1)$) -- (1); \draw[line width = 0.3mm, ->, ogreen] (2) -- ($(2) + (0,-1.5)$) -- ($(4) + (0,-1.5)$) -- (4); \draw[line width = 0.3mm, ->, ogreen] (4) -- ($(4) + (0,1)$) -- ($(3) + (0,1)$) -- (3); \draw[line width = 0.3mm, ->, ogreen] (3) -- ($(3) + (0,-1)$) -- ($(2) + (0.5,-1)$) -- ($(2) + (0.5,1)$) -- ($(2) + (0,1)$) -- (2); \end{tikzpicture} \end{center} \end{solution} \vfill \problem{} What permutation (on five objects) is formed by the cycles $3 \to 5 \to 3$ and $1 \to 2 \to 4 \to 1$? \begin{solution} \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \node (5) at (4, 0) {5}; \draw[line width = 0.3mm, ->, ocyan] (3) -- ($(3) + (0,1)$) -- ($(5) + (0,1)$) -- (5); \draw[line width = 0.3mm, ->, ocyan] (5) -- ($(5) + (0,-1)$) -- ($(3) + (0,-1)$) -- (3); \draw[line width = 0.3mm, ->, ogreen] (1) -- ($(1) + (0,-1)$) -- ($(2) + (0,-1)$) -- (2); \draw[line width = 0.3mm, ->, ogreen] (2) -- ($(2) + (0,1.5)$) -- ($(4) + (0,1.5)$) -- (4); \draw[line width = 0.3mm, ->, ogreen] (4) -- ($(4) + (0,-1.5)$) -- ($(1) + (0.5,-1.5)$) -- ($(1) + (0.5,1)$) -- ($(1) + (0,1)$) -- (1); \end{tikzpicture} This is $[41523]$ \end{center} \end{solution} \vfill \pagebreak \definition{Cycle Notation} We now have a solution to our problem of notation. Instead of referring to permutations using their output, we will refer to them using their \textit{cycles}. \vspace{2mm} For example, we'll write $[2134]$ as $(12)$, which denotes the cycle $1 \to 2 \to 1$: \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \draw[line width = 0.3mm, ->, ocyan] (1) -- ($(1) + (0,-1)$) -- ($(2) + (0,-1)$) -- (2); \draw[line width = 0.3mm, ->, ocyan] (2) -- ($(2) + (0, 1)$) -- ($(1) + (0, 1)$) -- (1); \end{tikzpicture} \end{center} As another example, $[431265]$ is $(1324)(56)$ in cycle notation. \par Note that we write $[431265]$ as a \textit{composition} of two cycles: \par applying the permutation $[431265]$ is the same as applying $(1324)$, then applying $(56)$. \begin{center} \begin{tikzpicture}[scale=0.5] \node (1) at (0, 0) {1}; \node (2) at (1, 0) {2}; \node (3) at (2, 0) {3}; \node (4) at (3, 0) {4}; \node (5) at (4, 0) {5}; \node (6) at (5, 0) {6}; \draw[line width = 0.3mm, ->, ocyan] (3) -- ($(3) + (0,-1)$) -- ($(2) + (0,-1)$) -- (2); \draw[line width = 0.3mm, ->, ocyan] (2) -- ($(2) + (0,1.5)$) -- ($(4) + (0,1.5)$) -- (4); \draw[line width = 0.3mm, ->, ocyan] (4) -- ($(4) + (0,-1.5)$) -- ($(1) + (0,-1.5)$) -- (1); \draw[line width = 0.3mm, ->, ocyan] (1) -- ($(1) + (0,1)$) -- ($(3) + (0,1)$) -- (3); \draw[line width = 0.3mm, ->, ogreen] (5) -- ($(5) + (0,-1)$) -- ($(6) + (0,-1)$) -- (6); \draw[line width = 0.3mm, ->, ogreen] (6) -- ($(6) + (0,1)$) -- ($(5) + (0,1)$) -- (5); \end{tikzpicture} \end{center} Any permutation $\sigma$ may be written as a product (i.e, composition) of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par Make sure you believe this fact. If you don't, ask an instructor. \par Also, the identity $f(x) = x$ is written as $()$ in cycle notation. \problem{} Convince yourself that disjoint cycles commute. \par That is, that $(1324)(56) = (56)(1324) = [431265]$ since $(1324)$ and $(56)$ do not overlap. \par \problem{} Write the following in square-bracket notation. \begin{itemize} \item $(12)$ \tab~\tab on a set of 2 elements \item $(12)(435)$ \tab on a set of 5 elements \vspace{2mm} \item $(321)$ \tab~\tab on a set of 3 elements \item $(321)$ \tab~\tab on a set of 6 elements \vspace{2mm} \item $(1234)$ \tab on a set of 4 elements \item $(3412)$ \tab on a set of 4 elements \end{itemize} \note{ Note that $(12)$ refers the \say{swap first two} permutation on a set of \textit{any} size. \\ We can now use the same name for the same permutation on two different sets! \\ } \vfill \problem{} Write the following in square-bracket notation. Be careful. \begin{itemize} \item $(13)(243)$ \tab on a set of 4 elements \item $(243)(13)$ \tab on a set of 4 elements \end{itemize} \vfill \problem{} Look at the last two permutations in \ref{insquare}, $(1234)$ and $(3412)$. \par These are \textit{identical}---they are the same cycle written in two different ways. \par List all other ways to write this cycle. \hint{There are two more.} \pagebreak \problem{} What is the inverse of $(12)$? \par How about $(123)$? And $(4231)$? \par \note{ Note that again, we don't need to know how big our set is. \\ The inverse of $(12)$ is the same in all sets. } \vfill \problem{} Say $\sigma$ is a permutation composed of cycles $\sigma_1\sigma_2...\sigma_k$. \par Say we know the order of all $\sigma_i$. What is the order of $\sigma$? \begin{solution} $\text{lcm}\Bigl(\text{ord}(\sigma_1),~ \text{ord}(\sigma_2),~ ..., ~ \text{ord}(\sigma_k)\Bigr)$ \end{solution} \vfill \problem{} Show that any cycle $(123...n)$ is equal to the product $(12)(23)...(n-1, n)$. \begin{solution} TODO \end{solution} \vfill \problem{} Write $(7126453)$ as a product of transpositions. \par \vfill \pagebreak \problem{} Show that any permutation is a product of transpositions. \begin{solution} Use \ref{cycletrans}. \end{solution} \vfill \problem{} Show that any permutation is a product of transpositions of the form $(1, k)$. \par \begin{solution} Use \ref{simpletrans} and rewrite each $(a, b)$ as $(1, a)(1, b)(1, a)$. \end{solution} \vfill \pagebreak \problem{} Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$. \begin{solution} TODO \end{solution} \vfill \problem{} Show that any permutation is a product of adjacent transpositions. \par (An \textit{adjacent transposition} swaps two adjacent elements, and thus looks like $(n, n+1)$) \begin{solution} As before, we will use \ref{simpletrans} and rewrite the transpositions it produces in a form that fits the problem. We thus need to show that every transposition $(a, b)$ is a product of adjacent transpositions. \vspace{8mm} In the proof below, assume that $a < b$ and perform induction on $b - a$. \par \textbf{Base Case:}\par If $b - a = 1$, we clearly see that $(a, b)$ is a product of adjacent. \par In fact, it \textit{is} an adjacent transposition. \vspace{4mm} \textbf{Induction:}\par Now, say $b - a = n + 1$. \par Assume that all $(a, b)$ where $b - a \leq n$ are products of adjacent transpositions.\par Note that $(a, b) = (a, a+1)(a+1, b)(a, a+1)$. \vspace{2mm} $(a, a+1)$ is an adjacent transposition, and $b - (a+1) = n$. \par Thus, $(a, b)$ is a product of adjacent transpositions. \end{solution} \vfill \pagebreak