\section{Table of Prime Knots} This table contains the 15 smallest prime knots, ordered by crossing number. \par Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot. \vspace{5mm} % Images are from the appendix of the Knot book. \vfill { \def\w{25mm} \foreach \l/\c/\r in {% {3_1}/{4_1}/{5_1},% {5_2}/{6_1}/{6_2},% {6_3}/{7_1}/{7_2},% {7_3}/{7_4}/{7_5},% {7_6}/{7_7}/{8_1}% }{ \hfill \begin{minipage}{\w} \begin{center} \includegraphics[width=\linewidth]{knot table/\l.png} \par \vspace{2mm} {\huge $\l$} \end{center} \end{minipage} \hfill \begin{minipage}{\w} \begin{center} \includegraphics[width=\linewidth]{knot table/\c.png} \par \vspace{2mm} {\huge $\c$} \end{center} \end{minipage} \hfill \begin{minipage}{\w} \begin{center} \includegraphics[width=\linewidth]{knot table/\r.png} \par \vspace{2mm} {\huge $\r$} \end{center} \end{minipage} \hfill~\par \vspace{4mm} } } \vfill \pagebreak