% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, singlenumbering ]{../../resources/ormc_handout} \usepackage{ifthen} \usetikzlibrary{ knots, hobby, decorations.pathreplacing, shapes.geometric, calc } \newif{\ifShowKnots} \ShowKnotsfalse %\ShowKnotstrue % Knot debugging. % Set to true to show knot info \newif{\ifDebugKnot} \DebugKnottrue \DebugKnotfalse \ifDebugKnot \tikzset{ knot diagram/draft mode = crossings, knot diagram/only when rendering/.style = { show curve endpoints, %show curve controls } } \fi % From "Why knot" by % % Create largest crossing number with cord % Human knot number: how many humans do you need to make the knot? % Human knot number for trefoil composition? % (looks like a wrap around center string) % % Figure-8 knot: mirror without letting go \tikzset{ knot diagram/every strand/.append style={ line width = 0.8mm, black }, show curve controls/.style={ postaction=decorate, decoration={ show path construction, curveto code={ \draw[blue, dashed] (\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta) node [at end, draw, solid, red, inner sep=2pt]{} ; \draw[blue, dashed] (\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast) node [at start, draw, solid, red, inner sep=2pt]{} node [at end, fill, red, ellipse, inner sep=2pt]{} ; } } }, show curve endpoints/.style={ postaction=decorate, decoration={ show path construction, curveto code={ \node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {}; } } } } %\usepackage{lua-visual-debug} \begin{document} \maketitle {Knots} { Prepared by Mark on \today } \section{Introduction} \definition{} To form a \textit{knot}, take a string, tie a knot, then join the ends. \par You can also think of a knot as a path in three-dimensional space that doesn't intersect itself: \vspace{2mm} \begin{center} \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] \begin{knot} \strand (1,2) .. controls +(-45:1) and +(1,0) .. (0, 0) .. controls +(-1,0) and +(-90 -45:1) .. (-1,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] % Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that. \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (1,2) .. controls +(-45:1) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-90 -45:1) .. (-1,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (0,2) .. controls +(2.2,0) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. (0,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \end{center} If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par If two knots are isomorphic, they are essentially the same knot. \definition{} The simplest knot is the \textit{unknot}. It is show below on the left. \par The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. \begin{center} \begin{minipage}[t]{0.48\textwidth} \begin{center} \begin{tikzpicture}[baseline=(p), scale = 0.8] \begin{knot} \strand (0,2) .. controls +(1.5,0) and +(1.5,0) .. (0, 0) .. controls +(-1.5,0) and +(-1.5,0) .. (0,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.48\textwidth} \begin{center} \begin{tikzpicture}[baseline=(p), scale = 0.8] \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (0,2) .. controls +(2.2,0) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. (0,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \end{center} \vfill \pagebreak \problem{} Below are the only four distinct knots with only one crossing. \par Show that no nontrivial knot can have has fewer than three crossings. \par \hint{There are 4 such knots. What are they?} \begin{center} \includegraphics[width=0.8\linewidth]{images/one crossing.png} \end{center} \begin{solution} Draw all four. Each is isomorphic to the unknot. \end{solution} \vfill \problem{} Show that this is the unknot. \par A wire or an extension cord may help. \begin{center} \includegraphics[width=0.35\linewidth]{images/big unknot.png} \end{center} \definition{} As we said before, there are many ways to draw the same knot. \par We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot. \vspace{2mm} \begin{center} \includegraphics[width=0.8\linewidth]{images/figure eight.png} \end{center} \vspace{2mm} \problem{} Convince yourself that these are equivalent. \vfill \pagebreak \section{Knot Composition} Say we have two knots $A$ and $B$. The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends: \begin{center} \hfill \begin{minipage}[t]{0.15\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/composition a.png} $A$ \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.13\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/composition b.png} $B$ \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/composition c.png} $A \boxplus B$ \end{center} \end{minipage} \hfill~ \end{center} We must be careful to avoid new crossings when composing knots: \vspace{2mm} \begin{center} \includegraphics[width=0.45\linewidth]{images/composition d.png} \end{center} \vspace{2mm} We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par We say a knot is \textit{prime} otherwise. \problem{} For any knot $K$, what is $K \boxplus \text{unknot}$? \vfill \problem{} Use a pencil or a cord to compose the figure-eight knot with itself. \vfill \vfill \pagebreak{} \problem{} The following knots are composite. What are their prime components? \par Try to make them with a cord! \par \hint{Use the table at the back of this handout to decompose the second knot.} \begin{center} \hfill \includegraphics[height=30mm]{images/decompose a.png} \hfill \includegraphics[height=30mm]{images/decompose b.png} \hfill~\par \vspace{4mm} \end{center} \begin{solution} The first is easy, it's the trefoil composed with itself. \par \vspace{2mm} The second is knot $5_2$ composed with itself. \par Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par The figure-eight knot is NOT a part of this composition. Look closely at its crossings. \end{solution} \vfill \pagebreak \input{parts/table} \end{document}