\documentclass[ nosolutions, hidewarning, singlenumbering, nopagenumber ]{../../resources/ormc_handout} \usepackage{../../resources/macros} \usepackage{tikz} \usetikzlibrary{arrows.meta} \usetikzlibrary{shapes.geometric} % We put nodes in a separate layer, so we can % slightly overlap with paths for a perfect fit \pgfdeclarelayer{nodes} \pgfdeclarelayer{path} \pgfsetlayers{main,nodes} % Layer settings \tikzset{ % Layer hack, lets us write % later = * in scopes. layer/.style = { execute at begin scope={\pgfonlayer{#1}}, execute at end scope={\endpgfonlayer} }, % % Arrowhead tweak >={Latex[ width=2mm, length=2mm ]}, % % Nodes main/.style = { draw, circle, fill = white, line width = 0.35mm } } \title{Warm Up: Odd dice} \uptitler{\smallurl{}} \subtitle{Prepared by Mark on \today} \begin{document} \maketitle \problem{} We say a set of dice $\{A, B, C\}$ is \textit{nontransitive} if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$. In other words, we get a counterintuitive \say{rock - paper - scissors} effect. \vspace{2mm} Create a set of nontransitive six-sided dice. \par \hint{All sides should be numbered with positive integers less than 10.} \begin{solution} One possible set can be numbered as follows: \begin{itemize} \item Die $A$: $2, 2, 4, 4, 9, 9$ \item Die $B$: $1, 1, 6, 6, 8, 8$ \item Die $C$: $3, 3, 5, 5, 7, 7$ \end{itemize} \vspace{4mm} Another solution is below: \begin{itemize} \item Die $A$: $3, 3, 3, 3, 3, 6$ \item Die $B$: $2, 2, 2, 5, 5, 5$ \item Die $C$: $1, 4, 4, 4, 4, 4$ \end{itemize} \end{solution} \vfill \problem{} Now, consider the set of six-sided dice below: \begin{itemize} \item Die $A$: $4, 4, 4, 4, 4, 9$ \item Die $B$: $3, 3, 3, 3, 8, 8$ \item Die $C$: $2, 2, 2, 7, 7, 7$ \item Die $D$: $1, 1, 6, 6, 6, 6$ \item Die $E$: $0, 5, 5, 5, 5, 5$ \end{itemize} On average, which die beats each of the others? Draw a graph. \par \begin{solution} \begin{center} \begin{tikzpicture}[scale = 0.5] \begin{scope}[layer = nodes] \node[main] (a) at (-2, 0.2) {$a$}; \node[main] (b) at (0, 2) {$b$}; \node[main] (c) at (2, 0.2) {$c$}; \node[main] (d) at (1, -2) {$d$}; \node[main] (e) at (-1, -2) {$e$}; \end{scope} \draw[->] (a) edge (b) (b) edge (c) (c) edge (d) (d) edge (e) (e) edge (a) (a) edge (c) (b) edge (d) (c) edge (e) (d) edge (a) (e) edge (b) ; \end{tikzpicture} \end{center} \end{solution} \vfill Now, say we roll each die twice. What happens to the graph above? \begin{solution} The direction of each edge is reversed! \end{solution} \vfill \pagebreak \end{document}