\section{Balancing a plane} \definition{} Consider a massless two-dimensional plane. \par Affix a finite number of point masses to this plane. \par We will call the resulting object a \textit{two-dimensional system of masses:} \begin{center} \begin{tikzpicture}[scale = 0.5] %\draw[ % line width = 0mm, % pattern = north west lines, % pattern color = blue, %] % (1, 0) % -- (0.5, 0.866) % -- (-0.5, 0.866) % -- (-1, 0) % -- (-0.5, -0.866) % -- (0.5, -0.866) % -- cycle; %\draw[ % line width = 0.5mm, % blue %] % (1, 0) % -- (0.5, 0.866) % -- (-0.5, 0.866) % -- (-1, 0) % -- (-0.5, -0.866) % -- (0.5, -0.866) % -- cycle; %\fill[color = blue] (0, 0) circle[radius=0.3]; \fill[color = black] (-3, 3) circle[radius = 0.5] node[above] at (-3, 3.5) {$m_1$ at $(x_1, y_1)$}; \fill[color = black] (-5, -1.5) circle[radius = 0.4] node[above] at (-5, -1.0) {$m_2$ at $(x_2, y_2)$}; \fill[color = black] (3, -3) circle[radius = 0.35] node[above] at (3, -2.5) {$m_3$ at $(x_3, y_3)$}; \draw[line width = 0.5mm] (-7.5, -4.2) -- (6, -4.2) -- (6, 5) -- (-7.5, 5) -- cycle; \end{tikzpicture} \end{center} \vspace{5mm} \problem{} Show that any two-dimensional system of masses has a unique center of mass. \par \hint{ If a plane balances on a pin, it does not tilt in the $x$ or $y$ direction. \par See the diagram below. } \begin{center} \begin{tikzpicture}[scale = 0.5] % Horizontal \draw[line width = 0.5mm, dotted, gray] (-3, 3) -- (-3, -5); \draw[line width = 0.5mm, dotted, gray] (-5, -1.5) -- (-5, -5); \draw[line width = 0.5mm, dotted, gray] (3, -3) -- (3, -5); \draw[line width = 0.5mm, dotted, gray] (0, 0) -- (0, -5); \draw[line width = 0.5mm] (-7, -5) -- (6.5, -5); \fill[color = gray] (-3, -5) circle[radius = 0.3]; \fill[color = gray] (-5, -5) circle[radius = 0.3]; \fill[color = gray] (3, -5) circle[radius = 0.3]; \draw[line width = 0.25mm, pattern=north west lines] (0, -5) -- (-0.6, -6) -- (0.6, -6) -- cycle; % Vertical \draw[line width = 0.5mm, dotted, gray] (-3, 3) -- (8, 3); \draw[line width = 0.5mm, dotted, gray] (-5, -1.5) -- (8, -1.5); \draw[line width = 0.5mm, dotted, gray] (3, -3) -- (8, -3); \draw[line width = 0.5mm, dotted, gray] (0, 0) -- (8, 0); \draw[line width = 0.5mm] (8, 4) -- (8, -4); \fill[color = gray] (8, 3) circle[radius = 0.3]; \fill[color = gray] (8, -1.5) circle[radius = 0.3]; \fill[color = gray] (8, -3) circle[radius = 0.3]; \draw[line width = 0.25mm, pattern=north west lines] (8, 0) -- (9, -0.6) -- (9, 0.6) -- cycle; \draw[ line width = 0mm, pattern = north west lines, pattern color = blue, ] (1, 0) -- (0.5, 0.866) -- (-0.5, 0.866) -- (-1, 0) -- (-0.5, -0.866) -- (0.5, -0.866) -- cycle; \draw[ line width = 0.5mm, blue ] (1, 0) -- (0.5, 0.866) -- (-0.5, 0.866) -- (-1, 0) -- (-0.5, -0.866) -- (0.5, -0.866) -- cycle; \fill[color = blue] (0, 0) circle[radius=0.3] node[above] at (0, 1) {Pivot}; \fill[color = black] (-3, 3) circle[radius = 0.5] node[above] at (-3, 3.5) {$m_1$ at $(x_1, y_1)$}; \fill[color = black] (-5, -1.5) circle[radius = 0.4] node[above] at (-5.5, -1.0) {$m_2$ at $(x_2, y_2)$}; \fill[color = black] (3, -3) circle[radius = 0.35] node[above] at (3, -2.8) {$m_3$ at $(x_3, y_3)$}; \end{tikzpicture} \end{center} \vfill \pagebreak \vfill \pagebreak