\section{Squares, Cubes, and Roots} Now, take a look at scales A and B, and note the label on the right: $x^2$. If C, D are $x$, A and B are $x^2$, and K is $x^3$. \medskip Finding squares of numbers up to ten is straightforward: just read the scale. \\ Square roots are also easy: find your number on B and read its pair on C. \\ \def\sliderulewidth{13} \begin{center} \begin{tikzpicture}[scale=1] \abscale{0}{1}{B} \cdscale{0}{0}{C} \end{tikzpicture} \end{center} \problem{} Compute the following. \begin{enumerate} \item $1.5^2$ \item $3.1^2$ \item $7^3$ \item $\sqrt{14}$ \item $\sqrt[3]{150}$ \end{enumerate} \begin{solution} \begin{enumerate} \item $1.5^2 = 2.25$ \item $3.1^2 = 9.61$ \item $7^3 = 343$ \item $\sqrt{14} = 3.74$ \item $\sqrt[3]{150} = 5.313$ \end{enumerate} \end{solution} \vfill \problem{} Compute the following. \begin{enumerate} \item $42^2$ \item $\sqrt{200}$ \item $\sqrt{2000}$ \item $\sqrt{0.9}$ \item $\sqrt[3]{0.12}$ \end{enumerate} \begin{solution} \begin{enumerate} \item $42^2 = 1,764$ \item $\sqrt{200} = 14.14$ \item $\sqrt{2000} = 44.72$ \item $\sqrt{0.9} = 0.948$ \item $\sqrt[3]{0.12} = 0.493$ \end{enumerate} \end{solution} \vfill \pagebreak