#import "../handout.typ": * #import "../macros.typ": * #import "@preview/cetz:0.3.1" = Tropical Cubic Polynomials #problem() Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #graphgrid(none) #v(1fr) #pagebreak() // MARK: page #problem() Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #graphgrid(none) #v(1fr) #problem() Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #graphgrid(none) #v(1fr) #pagebreak() // MARK: page #problem() If $f(x) = a x^3 #tp b x^2 #tp c x #tp d$, then $accent(f, macron)(x) = a x^3 #tp B x^2 #tp C x #tp d$ for some $B$ and $C$. \ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b$, $c$, and $d$. #v(1fr) #pagebreak() // MARK: page #problem() What are the roots of the following polynomial? #align( center, box( inset: 3mm, $ 3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5 $, ), ) #v(1fr) #pagebreak() // MARK: page #problem() If $ f(x) = c_0 #tp c_1 x #tp c_2 x^2 #tp ... #tp c_n x^n $ then $ accent(f, macron)(x) = c_0 #tp C_1 x #tp C_2 x^2 #tp ... #tp C_(n-1) x^(n-1) #tp c_n x^n $ #v(2mm) Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$. \ Then, find formulas for the roots $r_1, r_2, ..., r_n$. #v(1fr) #problem() Can you find a geometric interpretation of these formulas \ in terms of the points $(-i, c_i)$ for $0 <= i <= n$? #v(0.5fr)